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measurement of signals from the two systems. By design, DORPH
reflects only the crosscorrelations between systems and not the
intracorrelations within the separate systems.

DMORPH was applied to the input and output signals from
various artificial neural network architectures to attempt to
determine which networks, and which parameter settings within
each, induced the greatest structural similarity between input
and output signals after learning had taken place. Networks
tested included a "drive reinforcement" network of Klopf, a "back
propagation" network, and a network which learns by a method of
Bienenstock, et.al. The surprising results provided new insights
into the relationships between cognitive systems and their
environments and into the essential distinction between neural
networks as cognitive systems and neural networks as mere associ-
ative memories. For example, the initial tests of DHORPH have
explained the interesting psychological tendency of an observer
to always perceive the greatest degree of order in his observed
environment when his knowledge is at a certain intermediate stage
between total ignorance and complete understanding. Yet, the
application of DMORPH to network signals has shown that simple
correlation between input-and output signals is misleading and
inappropriate as a measure of quality in a cognitive system.

This research applies to the development and testing of real
time autonomous learning systems suitable for application to
problems of avionics sensor fusion, adaptive sensor processing,
and intelligent resource management., '
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MARTINGALE RESEARCH CORPORATION

BIOMASSCOMP PHASE I FINAL REPORT

1. INTRODUCTION AND OBJECTIVES

This is a technical report of a six month Phase I research

project supported by the U.S. Air Force Wright Aeronautical

Laboratories (WPAFB, OH) under the Small Business Innovation

Research Program. This report presents a complete account of our

investigations of the subject pursuant to the objectives of the

original SBIR proposal, and is organized according to the listing

of those objectives in the proposal. In the pursuit of those

objectives, we have not only achieved the implementation of a

successful entropic index of the structural similarity of two

systems, but we have also identified errors in our planned

approach through the conduct of experiments that failed to con-

clusively demonstrate the expected results. This report details

both the successes and the failures, and the valuable information

that we have learned from them.

As stated in our Phase I proposal, our objective was to

demonstrate the feasibility of developing and applying an

entropic measure of structural similarity of systems so as to

obtain (in the follow-on project) an automated procedure for

mapping the architecture of a living neural LifLwork into a

machine. In order to accomplish this objective, our tasks were:

1. Identify and develop a mathematical technique for the

measurement and analysis of relative information content

in the signals of a network,

2. Identify and develop a mathematical technique for the

parametric optimization of artificial neural network
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BIOMASSCOMP PHASE I FINAL REPORT

models as measured by the combined relative information

content of a functioning hybrid network,

3. Identify the functional design of a multichannel bidir-

ectional signal translator suitable for the realtime

interface of a natural network on the multimicroelec-

trode plate (MMEP) apparatus of G. Gross at North Texas

State University (NTSU) to an artificial network,

4. Closely monitor and assist the ongoing work at NTSU to

demonstrate the capability of extracellular electrodes

in the MMEP apparatus to be used for the injection of

localized potentials capable of stimulating activity in
specific subnets of the cultured neural network,

5. Closely monitor and assist the ongoing work at NTSU to

demonstrate the ability to "condition" the behavior of a
natural neural network in culture through controlled

stimulation.

Our principal achievement has been the definition and
algorithmic implementation of a scalar measure of structural sim-

ilarity of two systems, based on extensive time-series of state

measurements (signal vectors) from the two systems. This report

details that definition, and the FORTRAN source code of the

algorithm is included in an appendix. A series of experiments
with random data vectors containing varying degrees of

correlations demonstrates the behavior of the algorithm.

Moreover, these experiments predict an interesting psychological

tendency of an observer to always perceive the greatest degree of
order in his observed environment when his knowledge is at a
certain intermediate stage between total ignorance and complete

understanding.

The application of DMORPH to neural network architectures

has shown that our approach to using the structure measure to

improve the architectural design of neural networks by comparing
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them Jo natural networks appears to have been flawed. Yet, the

flaw is not one that might have been easily detected without a

study of the results of the experiments (although the a posteri-

ori explanation in the form of a suitable "gedankenexperiment" is

simple enough), and its exposure has resulted in new and useful

insights into the structural and functional principles of neural

networks and other self-organizing systems. Those insights are

discussed in the "Analysis" section of this report, and they will

constitute the direction for our planned Phase II research.

1.1 Background

The outline of our argument is this: The objective of an

intelligent system is to minimize surprise, or novelty, in its

interaction with its environment in a manner that is consistent

with its "mission". To this end, it builds predictive models of

the world and stores these models in any convenient recording

medium including, but not limited to, its owu memory. A predic-

tive model will be more carefully defined below in Section 7, but

heuristically it is a transition operator which associates each

sensory measurement with an empirically-based probability density

for the perceptive effects of future observations. (Ho & Lee
r4]) This description is further illustrated by Watanabe, who

says ([10], p.142) "The existence of structure means that the

knowledge of a part allows us to guess easily the rest of the

whole."

The brains of humans and animals are not apart from the

universe, but are parts of the whole. Their function, which we

summarize with the verb, "to learn", is to adopt a form which,

when explored by the animal through associative recall, allows it
to guess what is going on in the rest of the universe and to

adjust its behavior to minimize surprize subject to its mission.

Page 3



BIOMASSCOMP PHASE I FINAL REPORT

The design of artificial neural networks and neurocomputers

normally proceeds by using the best available data from the

neuroscience community to build and test computational models of

the components and structures of the brain. Models that work

well are improved upon. Models that flop are filed under
"experience". The BIOMASSCOMP project (originally described in

Dawes (2)) was designed to speed up this developmental process by

defining a computable, numerical measure of the quality of a

neural network model. This measure estimates the degree to which

two neural networks are producing signals that have the same

structure. A low value of the measure means there is little

similarity in structure between the two systems. A high value

means the structures are strongly correlated.

The initial application of the structure function was

visualized to work as follows: An artificial and a natural

neural network would be connected as in Figure I by a bidirec-

tional communication link called the "synthetic axon bundle';.

The signals emanating from the natural network would be demodu-

lated with a pulse-rate demodulator and would constitute one of

two signal vectors. The signals emanating from the artificial

network would constitute the other signal vector. The structure

function would be applied to these two signal vectors and a

numerical "structural similarity" would be obtained. As the two

networks adapted through their learning laws, we would expect to

see changes in the similarity value due to the intrinsic self-

organizational behavior of both networks, and we would expect to

see this value stabilize asymptotically in the absence of

external stimuli to either system. Then, if we made any

adjustment to the architectural parameters of either system, we

would expect to see the structure value change again and

stabilize on a different value. We would infer that the higher

value of the structure function was obtained with the better set

of architectural parameters and we could therefore obtain further

improvements in the architecture by adjusting the parameters in

the direction of the highest structural similarity. Since the
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MARTINGALE RESEARCH CORPORATION

design parameters of the simulated network are under the dynamic

control of the experimenter's computer program, it can automatic-

ally increment or decrement these parameters so as to drive the

value of the structure function to its highest value.

t EURO-

MMEP SYNTHETIC AXON BUNDLE COMPUTER

Figure 1. The Hybrid Artificial/Natural Neural Network

Aside from the problems illuminated later by our experi-

ments, there are a number of difficulties that we could and did

anticipate. One of these is that the structure function is

difficult to compute, but we have made considerable progress in

that respect, as we shall demonstrate. More serious is the fact

that the performance of complex, nonlinear systems does not

always improve or degrade continuously as a function of their

design parameters. In particular, the performance may be subject

to bifurcations, catastrophes, and chaotic behavior as certain

parameters approach critical values. This mears that the search

for improvement may have to be undertaken through stochastic
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methods, such as simulated annealing, rather than by the more

standard "hill-climbing" methods. Not the least of the problems

is the realization of the bidirectional communication link

between an artificial and a natural neural network, which relies

on the successful development of a method for multiple-site

stimulation of the natural network in the MMEP culture.

Page 6
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2. DEFINITION OF THE STRUCTURE MEASURE

Our initial task has been to develop the measure of struc-

tural similarity of the two networks, based on the concept of the

Gibbs relative entropy function as described by Watanabe (101.

We now have a structure estimator (called DMORPH) running and

have tested it on actual pre-processed data from Prof. Guenter

Gross's laboratory at North Texas State University (cf., Appendix

A).

Any neural network which is worth its salt does at least

this one job well: It builds internal representations of

external events in such a way that an appropriate stimulus at a

later time will recover "a substantial portion" of the entire

representation. Some have referred to this behavior as "self-

organization", but that is a seriously misleading phrase.

Consider the following homely analogy: Two politicians, Mr. A

and Mr. B, have widely differing world-views. Mr. A sees

everything as either black or white, with nothing in between.

Mr. B maintains a complex set of concepts and classifications for

analyzing events. A third politician, Mr. Z, has just died.

In terms of organization, as expressed by the entropy level

of his neural activation states, Mr. Z is extremely well-

organized, since the activation state of his neurons is a delta

function in time and space. (This is to be distinguished from

his thermodynamic entropy which, while lower than that of a

warmer living brain, is still rather high.) Mr. A is almost as

well organized, his activation state falling always into one of

two event categories, regardless of the facts of the external

world. But Mr. B has the entropy of a very disorganized person,

since his mental state can be found in any of a large number of

configurations over time. Unfortunately, if he is a member of

the "wrong" political party, Mr. B's ideas may reflect no corre-

lation whatsoever with reality in spite of their complexity.

Page 7
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Thus we see that organization, as measured by entropy, is

not to be mistaken as an objective function for intelligence.

There is no immediate monotonic relationship between the entropy

(of the probability distribution) of the state of one's thoughts

and the elusive quality we call intelligence. Yet the concept of

entropy, properly applied, can help us to make this quality much

less elusive.

The following sections detail the background and development

of DMORPH. Additional technical details can be found in Jaynes

[5) and in Watanabe [10].

2.1 Introduction to Entropy.

Entropy is a real-valued function whose domain is the set of

probability measures on some given probability space. When a
probability measure has a Radon-Nikodym derivative, p(x), this is

called the probability density function (pdf) of the probability

measure, and in this case, the entropy of p(x) is defined by

E(p) -f p(x)log[p(x)]dx
Jx

Whenever the probability measure is finite, i.e., there are only

a finite-number of events covering the sample space of x, then

the integral above can be replaced by the sum

E(p) = - SUM{ pi log(pi) } (1)

over the event sets with nonzero probabilities, pi (which we

shall refer to as the "nontrivial events of p"). It is not

difficult to see that this quantity can range between a minimum
value of zero, and a maximum value of log(N), where N is the

number of distinct nontrivial events of p. The minimum value is

taken when there is one certain event (in which case N=1). The

Page 8
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maximum value is taken when p i 1/N for each nontrivial event

of p.

In the following, we shall often speak of "the entropy of a

system". This will always mean the entropy of the probability

density function for the states that the system can take. Of

course, the set of states for a given system is itself an

abstraction and one may use different state spaces for different

purposes. For our purposes, we are interested in the activation

state of an ensemble of neurons, and not in their mclecular

kinetics.

The entropy of a neural system is an extensive quantity.

That is, if the system is partitioned into two subsystems, there

will be three possibly distinct entropies to deal with: Those of

the two subsystems, and that of the whole system. Watanabe shows

us how to relate these three quantities.

2.2 Entropic Structure

Suppose that we are given a system whose state space f = A

x B, is represented as the Cartesian product of two subsystem

state spaces, A and B. Suppose further that x E fl is

distributed according to the pdf P(x). If we write x = (u,v),

where u E A and v E B, then we can obtain in the usual fashion

the marginal probabilities of u and v as

P (u) =F P(x) dv

and (2)

P (v) = F P(x) du
B "A

We can now obtain a second pdf on Q as follows:

Q(x) = PA(u) PB(v)

Page 9
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The random vectors u and v are independent if and only if

P(x) = Q(x), by definition.

Now, given any two pdf's P1  and P2  on a single state

space, 0, J.W. Gibbs has defined the function,

G(P1,P 2 ) = SUM. [ Pi lg{Pli/P20 1 (3)

and has proved that it is always nonnegative, and that it

vanishes if and only if P i = P2i for all i . It fails to be

a metric on the space of pdf's on S', in part because it is not
symmetric (although that is easily remedied), but we need not go

into much more detail than this.

In the special case in which P2  is derived from P as Q

was derived from P above, we can now define the structure

funi Jp(A,B):

J p A,B) =G(P,Q)

The notation on the left stresses the fact that the state of the

original system S, is distributed by the pdf P, which is the

only pdf in sight, and that each partitioning of the system into

factor spaces A and B produces the nonnegative number Jp(A,B)

which depends on P and on the two marginal probabilities that

fall out of the state space factorization. These two marginal

probabilities have their own entropies, E(PA) and E(PB), and it

can further be shown that

Jp(AB) = E(PA) + E(PB) - E(P) 1 0 (4)

The proof is in Watanabe io]. Because of this equation, the

structure function is also referred to as the "excess entropy"

generated by the assembly of two systems into one.

Page 10
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Note that the structure function vanishes if and only if the

subsystems are statistically independent, i.e., if and only if

their joint pdf (P) is the product of their separate pdf's. This

in turn implies that there is no (pairwise) correlation between

any component of u E A and any component of v E B, although
there may well be internal correlations within u and within v.

The converse is false (lack of pairwise correlation does not
imply independence), but the contrapositive is, of course, true:

If crosscorrelations are nonzero, then the structure function

will be strictly positive.

We have defined a normalized version of the structure

function, called DMORPH, which is constrained to take values

between 0 and 1, regardless of the dimensions of the state spaces

and regardless of the (finite) number of primitive events which

partition the state spaces. Thus, we have

DMORPH = Jp(AB)/Mp(AB), (5)

where

Mp(A,B) = E(P) - Max(E(PAIE(PB)]

The normalization divisor, Mp(AB), is only our best current

estimate of an upper bound for the structure function. We have

not proven that is a supremum. It is obtained by supposing that

the smaller of the two systems (say, B) is completely correlated

with a subsystem of the larger, in which case the "excess S

entropy" is the difference between the entropy of the whole and

the entropy of the larger subsystem. This un-rigorous argument

is supported by numerical experimentation and might be made into

a proof with a little more effort.

The normalized structure function, DMORPH, is the tool which

we have used in our experiments to measure the relative similari-

ty of structure between two systems based on vector samples of

Page 11
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signals from the two systems. Computation of DMORPH relies on

the ability to estimate the three constituent entropies, and this
is not an easy task. Perhaps the most significant contribution

of this work is the development and implementation of this

algorithm.

2.3 Computation of the Structural Similarity (DMORPH)

In order to estimate the entropy (relative or otherwise) of

a system, it is necessary to obtain an estimate of the probabil-

ity density function for the state-vector of the system. In

order to account for both spatial and temporal correlations in

the joint PDF, the state-vector must be sampled and held over a

time interval which is long enough to span the coherence of the

system. Since the long-term memory of a neural network is

supposed to maintain temporal coherence over the lifespan of the

network, it will clearly not be possible to sample, hold, and

process the full quantity of data needed to characterize the

system!

Instead, it will have to suffice to use a time window which

is long enough to cover the short-term dynamics of the network,
i.e., its "impulse response". With such a window, the resulting

estimated PDF will reflect the short-term memory (STY) of the

network, including both the neuronal transitions and the network

effects, but can only hope to reflect as much of the long-term

memory dynamics as are evident within the sample window. These

may not be insignificant. According to Klopf [61 the coherence

needed to obtain storage of long-term memories in animals is on

the order of about three seconds.

Consider now the problem of estimating the PDF for the
signal vector (including a number of time samples) of the system.

Traditionally, this would be done by partitioning the ranges of

Page 12
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the samples into "event bins", and accumulating a histogram.

The entropy would then be estimated by computing

E = SUM i[N[/N)*Iog(Ni/N)], (6)

where 1i is the number of occurrences of the i-th event, and N is

the total number of trials in the experiment. For a vector with,

say, 8 components and a time-window of, say, 32 samples per trial

(10 samples/sec for 3.2 sec) and a partition of the range of each

of those 256 variables into, say, 8 levels -- that comes to n

8**256 possible events! This is clearly beyond the capacity of

available computational methods.

The estimation technique known as the Maximum Entropy Method

(MAXENT, cf., Jaynes [5)) overcomes these problems by constrain- -

ing the pdf's of interest to lie within certain limited classes

of functions. For example, they may seek the pdf of maximum

entropy among all those pdf's whose mean and covariance are equal

to the sample mean and the sample covariance. Under these and

similar constraints, the solution may be found by the method of

Lagrange multipliers. Although these methods have been applied

to the study of living neural networks (9) we assert that the

effort is futile. The pdf of the signal vector of a neural

network is typically extremely complex, as befits a system which

by design extracts and stores millions of similarity clusters of

data which it finds in its sensory inputs. Thus the signals from

such systems will of the essence be "mega-modal". But the MAXENT

distribution determined by the first two statistical moments (on "

an infinite domain) will be unimodal, namely the multivariate

Gaussian. Since it is precisely the fine structure of the signal

density that we are interested in, and not the textbook

statistical parameters, we need a nonparametric method which •

reflects only those constraints imposed by our measuring

instruments.
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In the end, our methods for understanding and reverse

engineering the brain will look very much like the method that

the brain uses for understanding and reverse engineering its

sensory environment. Such an "eternal golden braid" will make

the recursive tangles of Godel, Escher, or Bach look like mere

children's toys. In the following description of our method for

estimating structural similarity, the reader is invited to

observe that the design of the computational methods may hold

more clues to the desian of intelligent systems than will result

from their apDlication.

We are approaching the problem in the following way. For

computation of the DMORPH function THREE entropies must be

computed. We can reduce that to just ONE entropy via the

following argument.

We argue that = partitioning of the sample space into

events prior to the collection of data imposes an unwarranted

bias on the resulting entropy measurement. For example, the use

of 7 threshold levels (defining 8 events) on a real-valued

measurement must of necessity define two regions which are

infinite in extent, and the placement of these thresholds

presumes some knowledge of where the bulk of the measurements

will lie. Therefore, for our computations, we use only the a-

priori knowledge of the computational resources at our commana to

select the NUMBER of event-bins for each component of the sampled

data I ; and we then adjust the BOUNDARIES of these bins (i.e.,

1: In truth, even this strategy imposes hidden a-priori
constraints. It assigns an arguably unwarranted priority to
numerical contiguity within events. Why, for example, should
numerically contiguous events be preferred by nature over,
say, a partitioning in which events are defined by the value
of the third significant digit of an octal representation of
the measurements? The answer is reasonable and straight-
forward: Our measuring instruments have inertia and this
results in an unavoidable time-averaging of results. Thus,
the definition of events by contiguous ranges of measurements
automatically incorporates this smoothing constraint.
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the thresholds that separate them) during data collection so that

the number of observed events per bin is the same (+/- 1) for p

each bin. This results in a "tiling" of the n-dimensional event

space (n = product of sample-vector dimension times the number of

time-samples per trial) into equiprobable events.

X2

I p

Figure 2. Binary Tiling of 2--D Sample Space

The actual procedure is illustrated for a two-dimensional

random vector as follows. (See Figure 2. ) Tiling of the subsys-

tem sample spaces is easily accomplished using a sort routine on

the components of the sample vector. We are currently partition-

ing each component into only two equiprobable events because of

the computational limitations. (There is a big difference

between (2)**256 events and (3)**256 events.) Thus we look

first at component i=1 of the sampled data and use a sort

routine to find the median, where we locate the single threshold

for the first component. Then, for all sample vectors whose
P
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first component lies below the threshold, we find the median

value of their second components. This becomes the first of TWO

thresholds for the second component. The second threshold is

obtained by finding the median of the values of the second

components whose first components lay above the threshold. This

results in four "tiles" which partition the two-dimensional

samples into equiprobable events. If the sample vectors were

three-dimensional, there would be four thresholds on the third

axis, and the seven total thresholds would partition the three-

dimensional space into 8 equiprobable events.

x2

I II i i I I
------------ I 11I --I I- - -

C~lI----
-_ _--_"_ _- - -I - -

- - - - -I- -.- } --

Figure 3. Tiling of 2-D Sample Space with 8 Events per Segment

This tiling of the space is (in the limit of large numbers

of thresholds on each axis) equivalent to obtaining a PDF for the

data, in that the reciprocal of the volume of each nonvacuous

tile is proportional to the probability of finding the state of

the system in each unit volume within that tile. Although the

tiling is obviously dependent on the order in which the axes are
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selected, we conjecture that the differences become insignificant

as the number of thresholds on each axis increases. It is 0

instructive to observe that the tiling is a constructive repre-

sentation of the probability measure which has the histogram PDF

for its Radon-Nikodym derivative. The measure (more precisely,

the inner Jordan content) of any set of states is obtained by

counting the number of tiles within the set, the same as would be

done if the tiles were defined more customarily as unit hyper-

cubes. This is more easily seen when the number of events per

segment is larger than 2, as in Figure 3. That is, whereas the

unit tiling which is used for building a normal histogram repre-

sents the (translation invariant Lebesgue) measure associated

with the uniform PDF, the tiling derived from the data represents

the (in general, non-translation invariant) measure associated

with the actual PDF of the data. 0

Now, if we had only ONE entropy to compute, there would be

nothing to it, because our tiling guarantees that the sample

frequencies are uniform, and the entropy of a uniform distribu- 0

tion over n events is the maximum possible: log(n). But we are
measuring the entropies of two presumably coupled systems, having

n and m events, respectively, and there are THREE entropies in
question, namely the two entropies of the separate systems, and

the entropy of the composite system. We are at liberty to tile

the sample spaces of the two subsystems any way we like. But

once the events in the subsystems are defined, then the events in

the composite system are determined as the product space of the

two subspaces. The resulting entropy estimate E(P) for the

composite, therefore, must be computed by the usual formula (6).

It will be somewhat less than its maximum value (log(m*n)),

according to the degree of crosscorrelation, or structure,

between the subsystems, and the relative (excess) entropy will be S

Jp log(m) + log(n) - Etk) > 0. (7)
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From this, it is then easy to compute DMORPH using equation (5).

One observes that because the tiling maximizes the entropy

estimate for each of the subsystems, DMORPH measures only the

crosscorrelations which exist between them and is unaffected by
any changes in the internal organization of one which are not

reflected by corresponding changes in the other. This is also

confirmed by our experiments.

Listings of the program (DTEST) which computes DMORPH and
its associated tilings and entropies are included in Appendix B.
Experiments showing the performance of DMORPH are described in

Section 2.4, and the experimental configurations and their

resulting graphs are shown in Appendix C.

We conjecture that this method of event-boundary adjustment
can form the basis for a learning law for neural networks which

maximizes the information content of internal representations of
external events. This will be investigated further in Phase II.

2.4 DMORPH Characterization Experiments

2.4.1 ar_ p-titn

The DMORPH experiments were performed to test and verify the

performance of the algorithms which construct equiprobable event

tilings of the two subsystem sample spaces, which compute the

entropy of the composite system, and which compute the normalized

structure function, DMORPH.

In the first set of experiments (1 through 4), random
vectors X and Y of dimensions 2, 4, 6, and 8 were generated.

Their components were uniform in the interval [0,1). 2  These

2: The tiling algorithm worked so well that it immediately
detected a serious fault in our random number generator,
which we subsequently replaced with an algorithm from
Abramowitz & Stegun.
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experiments determined the running time for the algorithm and

demonstrated the relationship between the dimensions of the

subsystems and the amount of data which was needed to stabilize

the entropies and the structure value, DMORPH. A sample plot

showing the entropies (upper three curves) and DMORPH (lower

curve) as they evolve with additional trials of the experiment is

shown in Figure 4. Similar plots, together with the experimental

configurations are found in Appendix C to document the

characterization experiments.

FILE: EXP363DAT; ROUS: I TO 288 ; PLOT OF TRIAL vs. UH. ENTROPY +

X ENTROPY
Y ENTROPY -

4.93 --- D1ORPH---+

4.38-

3.83

3.29

2. 74- ' e

2.19 j
... ... .. .' ... ..... ................... X .. ... ..... X.. .... ... ......... ..W .. . . .. .

1.64 .1

1.18 f

9. 9 .......... ~.............. .. ............... .... ""1
___-----.. . . .- . . . .- 9-v-

1.8 23.1 4S.2 G7.3 89.4 111.6 133.7 I5.8 177.9 288.8 0
TRIAL

Figure 4. DMORPH Experiment for Dim(X)=2, Dim(Y)=3
Pseudorandom Data without gross correlations.
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In the second set of experiments (5 and 6), intracorrela-

tions were introduced into one or both of the random vectors X

and Y to determine whether the measured structural similarity

between X and Y were indeed independent of these intracorre-

lations.

In the third set of experiments (7 through 35), crosscorre-

lations were introduced between X and Y to determine their

effect upon the value of DMORPH and to evaluate the normalization

divisor to see whether it is close to the theoretical maximum of

the relative entropy.

2.4.2

The graphs in Appendix C illustrate the results of the

DMORPH characterization experiments.

Graphs of experiments 1 to 4 show that as the dimensionality

of the systems increases, the quantity of data needed to obtain

stable estimates of the entropies and, hence, of DMORPH also

increases. This is because the total number of distinct events

defined by the tiling algorithm on a subsystem of dimension N

is 2N, and before the subsystems can possibly exhibit their

maximum entropy, the number of samples per bin must be somewhat

larger than unity. The tiling algorithm insures that within each

subsystem, the events will be defined so that no matter how much

data is taken, the greatest difference between the number of

samples assigned to any two event-bins will be plus or minus one.

(Exceptions occur whenever certain sample values occur multiple

times, which prevents insertion of a threshold to separate them.)

But whenever that difference is a sizeable fraction of the total

number of data samples per bin, the entropy will be substantially

below its theoretical maximum. In particular, when the first

sample is taken, the distribution of samples in the event bins

looks like a delta function, so the entropy always starts at
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zero. After that, it climbs toward its theoretical maximum

(since the event-bin boundaries are being adjusted during data

collection), which is log( 2 N). We convert the logarithms to the

base 2, so that the theoretical maximum entropy for any of these

systems is just the dimension of the system.

Note that the value of DMORPH in these graphs begins at zero

and then rises to a maximum value before falling back toward

zero. The reason that it falls back toward zero, of course, is

because there is very little crosscorrelation between the

components of X and of Y. (The residual makes a nice measure 0

of the quality of the pseudorandom number generator.) But the

fact that it rises to a maximum showing some "false" structure

before adequate data is collected (see Figure 4 again) leads to

some interesting comparisons with the way people learn about 0

their environment. It seems to say that when we are confronted

with a totally structureless system to observe, and we begin to

collect data on it, we will first be convinced that the system is

structureless; then we will begin to see patterns; but as the

data becomes statistically complete all the patterns disappear.

It also confirms the wisdom of carving out low-dimensional

analytical tasks, because with the really big problems (e.g.,

Neural Network theory, or Artificial Intelligence) the amount of

data which one is likely to obtain during the attention-span of

the average funding agency will most likely lead one to make

grandiose claims of great discoveries which are doomed to

evaporate when the data are more complete.

Subsequent experiments, described below, will show the same

qualitative behavior, except that when there really is some

crosscorrelation between the subsystems, the "false" structure

then gives way to a nonzero asymptotic value.

In the next set of experiments, numbered 5 and 6 in Appendix

C, intracorrelations were introduced (e.g., X 1 := X2 ) and the

results show that DMORPH is impervious to such deception.

Page 21

.0



BIOMASSCOMP PHASE I FINAL REPORT

Finally, crosscorrelations were introduced (e.g., X2 : 21

and X2 := X2+Y2), and these show that the structure function is

properly sensitive to them. Many experiments were performed,

showing, e.g., the structure between the input random vector and

the output random vector for various simple matrix transforms.

Finally, when Y is made equal to a subvector of X, DMORPH

rises almost to unity, showing that the normalization divisor is,

if not precisely correct, quite adequate to measure the relative

structure between two systems without being biased by the

dimensionality of the problem.
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3. ADAPTIVE STRUCTURE OPTIMIZATION

In order to test the applicability of the structure measure

to the control of neural network designs, it is necessary to

implement one or more typical neural network designs and simulate

the interaction of that network with the biological network.

With such a simulated interaction, it is possible to treat the

randomly generated (and naturally generated) input signals as

being representative of the natural network structure, while the

output signals represent the artificial network structure.

Originally, it was our intent to implement these trial

networks on the MassComp MC5700 at the Biosciences Laboratory at

North Texas State University, which has direct access to the

signals emanating from a living culture of several hundred

mammalian neurons (see Appendix A). However, it would not be

possible to perform the pulse-rate demodulation and the DMORPH

tiling in real time, and there is as yet no capability for the

artificial network model to talk back to the natural network with

any form of stimulation. Therefore, we opted to take simulta-

neously recorded data from multiple channels in digital form and

to perform the experiments off line at our own facilities.

In the following sub-sections, we describe the models which

we have implemented for these experiments. The details of the

experiments and their results are described subsequently in

Section 6 of the report. All of our network model software was

implemented under our proprietary dynamical system simulator

package, SYSPROTM This has allowed us to program the published

versions of these models into a flexible simulation module with

minimal duplication of effort. In all cases, it is only

necessary to produce a SYSPRO primitive system which computes the

transfer function and the learning algorithm of the subject model

and to link it into a possibly minor modification of our SYSPRO

composite network model as the replicated node. The specific
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interconnect graph is specified at run time through the system

initialization instructions.

3.1 The Back-Propagation Model

The back-propagation model which we used is the one which is

described in Rumelhart and McClelland [7]. This required almost

no programming effort, since it is a model with which we have

extensive experience and which we include as a sample network in

our commercial neural network simulator package. The network was

configured as a 4-3-4 feedforward network (including direct links

from the input layer to the output layer).

The transfer equations for the processing elements are given

by

y. = o C SUM i zji x i ; B, C ),

where w(A;B,C) is a sigmoidal function of the first argument,

with values ranging between 0 and 1, whose maximum slope, C, is

attained at A = B. Except for the ability to control the value

of the slope (C) at the desired threshold (B), this function is

the commonly used "logistic" function:

o (x;b,c) = 1/[ 1 + exp(-4c(x-b) ].

The learning law is modified only so that those factors of the

update equations which can be computed "locally" are computed

,'-thin the neuron model, and those which require information at

the network level are computed by the network model. (Our

simulator protocol facilitates the assembly of system models

written in heirarchical fashion, but it i,.iposes the discipline of

using only data which is available to subsystems through the

input terminals and the local state vector.)
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3.2 The Bear-Cooper-Ebner Model

The BCE model is based on the description by Bear, Cooper,

and Ebner El] of a learning algorithm attributed to Bienenstock.

This learning algorithm is partly Hebbian and partly anti-Hebbian

in that each synaptic weight learns in proportion to the presyn-

aptic activation, but the proportionality constant may be posi-

tive or negative according to the relationship of the current

post-synaptic activity to the recent ay-exU& of the post-synaptic

activity. That is, if the recent activity has been high, but the

current activity is lower than the average activity, the synaptic

weight will be reduced. If the recent activity has been low,

then almost any post-synaptic activity will be greater than the

average activity and will cause an increase in the synaptic

weight. The Bienenstock law is,

dm./dt = 0(c,c) d.3 3

where m. is the j--th synaptic weight, d. is its presynapticJ 3

signal, c is the neuronal output signal (in the linear region),

and c is the average of c over a recent time interval.

We implemented the 0 function (see Figure 5) as a spline

of a parabola on the left and an exponential learning curve on

the right of the crossover point, 0 M ' We implemented the

neuronal transfer function more generally than is described in

BCE, so as to include a sigmoid nonlinearity at the output (the

same logistic sigmoid used above in the back-propagation model),

rather than to assume operation in the linear region. This

necessitated a decision on the interpretation of c in the

learning law, and we chose to interpret c as the neuronal

output, rather than as the postsynaptic activation.
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PHI1 FUNCTION
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Figure 5. The Bienenstock 0 Function (two versions).

3.3 The Klopf "Drive-Reinforcement" Model

We implemented the drive-reinforcement model in accordance

with the description given in Klopf [6). In order to control the

learning rate, we augmented the learning algorithm with a GAIN

factor, which in effect scales the area under the learning rate
constant curve (the curve determined by the constants, cj, in

Klopf's report). By setting GAIN = 0, we could turn learning off
at any time so that the tiling operation of DMORPH would have a

time-invariant segment of the network's signals to work with,

i.e., one in which the structure was not changing during the

tiling operation. Also, since the GAIN factor was included, we

chose to implement the learning rate constants, cj, so that

their sum is unity. This then treats the c. vector as a weight

vector for a weighted average of the prior history of the
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synaptic efficacies. The relative magnitudes of our values for

c. were (almost) the same as used by Klopf.3

When the Klopf neurons were connected into a network, we

decided not to make any of the synapses non-plastic, since inside

the network it is unlikely that the distinction between condi-

tioned stimuli (CS) and unconditioned stimuli (US) could be made

a-priori, and in any case our time constraints did not allow such

fine-tuning.
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4. DESIGN OF THE BIDIRECTIONAL AXON BUNDLE

In this section we describe the proposed technique for

constructing an interface between a living tissue culture of

active mammalian neurons and an artificial neural network which

is hosted in a general purpose computer. The design is based on

the laboratory setup in the neurophysiology laboratory of Dr.

Guenter W. Gross at North Texas State University and on his

proposed apparatus for localized stimulation of that network.

First we present a brief description of the NTSU laboratory

apparatus, which is more thoroughly described in the Appendix.

After that, we describe the status of the work being conducted at

NTSU and at Southern Methodist University to achieve the local-

ized stimulation of the culture network. Finally, in the third

subsection following, we describe the functional design of a

bidirectional interface, called the Synthetic Axon Bundle, which

will enable the culture network to influence and be influenced by

the signals in an artificial neural network.

4.1 Description of the NTSU-Gross Apparatus

Professor Gross's laboratory apparatus is described briefly

here and illustrated thoroughly in Appendix A. The multimicro-

electrode plate (MMEP) on which the culture is maintained is

described first, followed by a description of the recording

chamber design. The digital processing system is illustrated on

page A-18.

Signals from the neural culture are amplified and patched

into the data acquisition and control processor of the Masscomp

MC5700 computer, where they are converted to digital form,

typically at a 30 kHz per channel sample rate. The digital

signal is filtered for A/C hum and is then processed for burst

detection (pages A-24 to A-29). Signals at various stages of
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processing can be selected for display on the color monitor (page

A-25).

The signal monitoring apparatus is supplemented by an

auditory monitor, which codes each electrode's activity into tone
bursts at a frequency that is unique to the source electrode, and

by an LED display which provides visual cues to the activity on

each electrode. These were originally designed as "PR enhance-

ment instruments" (where PR stands for Public Relations), but
they have proven to be valuable intuitive aids. The human ear

can detect patterns and correlations in the data that would go

completely unnoticed on a strip-chart recording.

Not shown in the hardware description of Appendix A is a
limited capability for stimulation of the cultured network. This

is described in greater detail below. First, we describe the

design of a Synthetic axon bundle which presumes the availability

of a suitable stimulation apparatus.

4.2 Functional Design of the Synthetic Axon Bundle

The purpose of the Synthetic Axon Bundle is to provide the

communication link between the natural mouse neural network (MNN)

in culture and the Artificial Neural System (ANS) being simulated
on the MASSCOMP. That is, it's function is to

(1) Modulate the signals that are output from the ANS so

that they can be used to stimulate the MNN and

(2) Demodulate the signals that are recorded from the MNN so

that they can be used as input to the ANS.

Figure 6 illustrates the basic functional design, and the

following description provides some of the details.
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D A C P MASSCOMP

PU L SE PULSE

S H A P E R GENERATOR

Figure 6. Design of the Synthetic Axon Bundle

ANS ----- > MNN

It is believed that the output of an ANS should represent

some sort of information transfer, either by its effect on the

modification of synaptic weights or the interpretation of what

this neuron firing means (the recognition of some pattern, say).

Therefore it is necessary to modulate each ANS output into a

spike train to be used to stimulate the neurons of the MNN which

are in close proximity to a particular electrode. There is no

requirement that the processing clocks of the two neural systems

be on the same time scale. The only requirement that exists is

that the data from the ANS be modulate& in such a manner that the

MNN finds it to be "stimulating". Some experimentation will be
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needed early in Phase II to verify that the following proposed

design will result in a real time stimulus of the MNN.

The simulation time increment, At, of the ANS model will be

set so that the data produced by it each At can be modulated and

used as a stimulus over the next At seconds for the MNN. Of

necessity, there will be a At second time lag between the data

output from the ANS and the stimulus being applied to the elec-

trodes of the MNN. Since we expect to perform temporal sampling

as well as sampling across the electrodes this should not be a

problem in our search for cross-system structure.

The amplitude of the voltage spikes generated to drive the

MNN will be consistent with the amplitudes observed in the MNN.

The frequency used will be proportional to the signal amplitude

out of the ANS.

MNN ----- > ANS

The signals recorded from the MNN were collected on one of

multiple micro electrodes in Dr. Gross's laboratory. The data

used in many of the experiments performed during the Phase I

effort was compressed using the following processing algorithm.

Eight simultaneous channels of data were collected at a
data rate of 30,000 Hz.

This 30,000 Hz. data rate is then reduced to 500 Hz. by
saving only the maximum absolute value of each disjoint
and contiguous set of 60 data values on each channel.

The dynamic range of these data values is further reduced
by comparing the data value with a threshold and replacing
it by a 1 if the data value is greater than or equal to
the threshold or replacing the data value by zero if it is
less than the threshold.

Finally, a 16 point rectangular filter (with unit weights)
is applied to a sliding window of the data so that the
data which is input to the ANS is an integer between 0 and
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16, inclusive. This data is to be interpreted as Pulse
Repetition Frequencies (PRF) for the neurons which are
being recorded on each electrode. The following table
gives the range of PRFs for each of the possible 17 data
values.

M(t) =0 PRF < 31.25 Hz.
M(t) =1 31.25 a; PRF < 62.50 Hz.
M(t) =2 62.5 PRF < 93.75 Hz.
M(t) =3 93.75 PRF < 125.0 Hz.
M(t) =4 125.50 1 PRF < 156.25 Hz.
M(t) =5 156.25 . PRF < 187.50 Hz.
M(t) =6 187.50 PRF < 218.75 Hz.
M(t) =7 218.75 - PRF < 250.00 Hz.
M(t) =8 250.0 . PRF < 281.25 Hz.
M(t) =9 281.25 . PRF < 312.50 Hz.
M(t) =10 312.50 PRF < 343.75 Hz.
M(t) =11 343.75 A PRF < 375.00 Hz.
M(t) =12 375.00 A PRF < 406.25 Hz.
M(t) =13 406.25 PRF < 437.50 Hz.
M(t) =14 437.50 £ PRF < 468.75 Hz.
M(t) =15 468.75 £ PRF < 500.00 Hz.
M(t) =16 PRF 500.00 Hz.

This algorithm has several defects, but it also has the

important advantage of its mere existence. Thus, we were at

least able to run experiments on genuine digitized data from the

MMEP, but the interpretation of results must be qualified by the

effect of the following problems.

First, the data collected on any single micro electrode is

known to be the result of firings of multiple neurons. These

signals should really be separated rather than lumped together.

Second, the threshhold used to declare a signal present on

the channel (electrode) is not changing over time and therefore

the false alarm rate is not constant on the channel.

Third, the data is collected at an extremely high data rate

but the high data rate features of the data are not exploited in

the signal processing algorithm at all. Why waste all the

magnetic storage?
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Fourth, the definition of bursting for the channel is

limited to 17 discrete values rather than taking on any value on

the positive interval from zero to the sampling rate.

A set of signal processing algorithms which addresses the

majority of these problems have been formulated by Martingale

Research Corporation and supplied to Dr. Gross, but they have not

yet been implemented due to lack of funds at NTSU for support of

student programmers. The design specification for these algo-

rithms were presented in (Dawes and Collard [3)) and are repro-

duced in Appendix D.

I
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5. PROGRESS WITH STIMULATION AND CONDITIONING

In order to utilize our structure function for improvement

of neural network designs in a real time interactive experiment,

it is required that the natural and the artificial neural net-

works be connected for bidirectional communications. Part of the

technology to accomplish that is described in the preceding sec-

tion and is called the "Synthetic Axon Bundle". It is basically

little more than a modulator/demodulator (MODEM) which translates

the signals from a form suitable to their source to a form

suitable to their destination. But the specific component which

injects the signal into the MMEP has not been specified or tested

yet.

What is needed are the following capabilities:

1. A multichannel pulse generator whose signal output

characteristics are subject to computerized control

individually by channel acccrding to pulse amplitude and

pulse rate.

2. A localization of the voltage gradients within the MMEP

so that gradients capable of inducing depolarization

into neurites are limited to the vicinity of the active

electrode.

The first requirement is not a big problem, but the second is

more difficult to satisfy. At present, the input signal is

applied between the selected electrode and the metallic bezel

which surrounds the recording area (see page A-9). This results

in depolarization of an estimated 10% to 40% of the neurons in

the culture. Anything which is more selective will have to be

based on the bipolar excitement of adjacent pairs of MMEP elec-

trodes, and this will require some redesign of the preamplifier

boards.
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A team of electrical engineers under the direction of Prof.

Lorn Howard at the Electrical Engineering Department of Southern

Methodist University is working on the stimulation problem. Dr.

Gross at NTSU presently has a spike-signal generator connected to

the MMEP which is capable of injecting a signal into a single

electrode at a selectable pulse width and rate. But without

sufficient control to be able to simulate bursting, he is unable

to demonstrate any form of conditioning of the network.
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6. EXPERIMENTS PERFORMED AND THEIR RESULTS

6.1 Back-Propagation Experiments

We ran some simple experiments using an eleven neuron feed-

forward network which learns by the "back-propagation" algorithm

to simulate the communication of a noncontrollable neural network

with a controllable one. The feedforward network is the 4-3-4

network shown in Figure 7. Its four input signals consisted of

raised sinusoids of various amplitudes and phases and its output

is determined by the weights and biases of the processing

elements.

Y P.E. P.E
S
T

N

S

P.E. ___T S

3 1

p~P.E _____

4

Figure 7. The 4-3-4 Backpropagation Network

To test the structure function on this network, we ran two

experiments. Both experiments used the same input vector

consisting of the four raised sinusoids, and both began with a
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random initialization of the weights of the network. With

learning turned off, the network was exercised for 1500 seconds

of simulation time (at 10 state updates per second) to obtain

baseline structure with the randomly initialized weights. Then

the learning was turned on and the "desired" output was set equal

to the input vector. Convergence was fairly rapid, and the

output took the qualitative appearance of the input, with

distortions appropriate to the nonlinearities of the sigmoid

function.. Then learning was turned off and the network was again

exercised to obtain the post-learning structure.

In the first experiment (BP4 #1,2, p. C.34-35), the baseline

value of DMORPH was 0.356 prior to learning and 0.336 afterward!

The structure actually declined after learning. Obviously there

was an error in our procedure.

Ordinarily, we would not report on the many experiments in

which we have identified procedural errors, but in this case, the

error was especially instructive and it supplied us with an

important clue to the role of causality in neural transductions.

That clue is taken up again and discussed at greater length in

Section 7. For now, we merely point out that in the first

experiment, we sampled both the input vector and the output

vector immediately upon presentation of each new input to the

network. Consequently, the signal that was present on the output

terminals was the one that was left over from the previous input.

The second experiment was the same as the first, except that

the inputs and outputs were sampled on the half-second instead of

at each whole second of the simulation clock. This allowed five

simulation cycles for the input, which only changes at the begin-

ning of each whole second, to propagate through to the output.

In this experiment the pre-learning structure was 0.446 (BP4 #3,

Page C.36), and the post-learning structure was 0.515 (BP4 #4,

Page C.37).

Page 38



MARTINGALE RESEARCH CORPORATION

Not only did the post-learning structure show an increase

over the pre-learning structure, but the pre-learning structure

as determined by the lagged sampling (0.446) was higher than the

pre-learning structure of the first experiment (0.356). This is

because in the first experiment, the structure reflected the

correlation that exists between one sample of a sinusoid and the

network-transduced image of another sample approximately 1/20

cycle into the past. In the second experiment, the structure

reflected the correlation that exists between each input sample

and ijta_ transduced image.

6.2 BCE Experiments

The BCE experiments were originally planned to parallel the

foregoing BPE experiments for a small network whose learning law

is due to Bienenstock (described above). After implementing and

testing a network of neurons using that learning law, however, we

observed a phenomenon that led us to discard our planned experi-

ments, at least for now.

What we observed was that if a constant nonzero input was

supplied to one synapse of a BCE neuron, the syna-ptic weight, and

consequently the neuronal output, quickly reached a periodic

state. The period of the oscillation was directly proportional

to the length of the window used for the sliding-window average

of the postsynaptic activation. That is, a long window produced

a low frequency oscillation, while a short window produced a high

frequency oscillation. The length of the period is of the same

order of magnitude as the length of the sliding window. The

graph in Figure 8 shows this behavior.

In retrospect, it might have been worthwhile to go ahead and

perform the DMORPH experiments on this kind of network, but there

was not sufficient time. We report these results as a matter of

interest regarding possible future use of the model.
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Figure 8. Oscillatory BCE Response to Unit Step Input

6.3 Drive-Reinforcement Experiments

In late December, we received Klopf's report [6J on his work

with the modified differential Hebbian learning law of Sutton-

Barto, which he calls the Drive-Reinforcement model. We were

able to implement a small network of neurons with the D-R

learning law in a couple of days, and we ran a set of experiments

similar to the BPE experiments, but on a four-neuron network. In

this series of experiments, each neuron received a separate

input, and each neuron's output was sampled. Thus our structure

function was evaluated on a four-by-four system.
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Figure 9. The Drive-Reinforcement Network

The experiments were designed to measure the effects of both

the learning algorithm and the architectural parameters on the

structural similarity between the input vector to the network and

its output vector. To determine the effect of the learning

algorithm, we began with a random initialization of the synaptic

weights on a four-neuron network connected as in Figure 9. This

interconnection incorporates two feedback loops, which helps -to

randomize the latency between onset of signals at the various

inputs to each neuron and thus guarantees that the drive-

reinforcement learning algorithm sees the necessary delays. We

did not hard-wire any synapses, since in the network setting it

is not clear that any synapse may know a-priori that it will be

receiving the unconditioned stimulus (US). The components of the

C vector (learning rate at delays of 0.5, 1.0, 1.5, 2.0, 2.5 sec)

were established at approximately 1/10 of the values suggested by

Klopf so that the area under the sliding "C" window would be
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unity. In particular, we chose C = (.4, .25, .2, .1, .05). By
setting the GAIN parameter at 10, we could scale these back up to

approximate Klopf's settings, or we could alter their values

directly.

The four input signals were the same raised sinusoids as

were used for the Back Propagation experiments, except that their

values only changed every three seconds in this experiment.

Since the Drive-Reinforcement neuron cycles only twice each

simulation second, this gives time for the signal to propagate
around the feedback loops before the input is changed. Other-

wise, the procedure was the same as before. Learning was turned

off to obtain a baseline input/output structure. Then learning
was turned on until the synaptic weights had undergone signifi-

cant change (but not long enough for any weight saturations to
occur). Then learning was turned off and the network was

exercised with the learned weights to obtain the post-learning

input/output structure.

The pre-learning structure with random weights was 0.480 and

after learning it was 0.412 (Page C.38,39).

A second experiment was run in which the values of CM1) and
C2) were reversed. This was an attempt to determine the effect

of Arhijtctural adjustments on the post-learning structure. The

pre-learning structure, of course, did not change, because this

architectural change does not affect propagation when the learn-

ing is turned off. After learning for the same length of time as
before, the post-learning structure was 0.391, slightly worse

than before (Page C.40).

6.4 Other Experiments.

One of our experiments was designed to look into the impli-
cations of time and causality. That experiment was performed by
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partitioning five of the 8 channels of actual action potentials

from the MMEP into an X signal of dimension 4 and a Y signal

of dimension 1. We then extended the Y signal along the time

axis so that its first component was sampled at the same time as

all four of X's components were sampled, and its next three

components were taken at three subsequent time values, so that Y

is also a four-vector. Our reasoning is that if one or more of

the X signals were to correlate with anything in Y, it would

only be seen at a later time. The situation is shown in Figure

10.

X

"X" half > "Y" half
>

of > of

culture culture

Y

Figure 10. Sampling Diversity in Space and in Time

The result was a DMORPH value of 0.1, which is far less than was

achieved with the simultaneous sampling in which both X and Y

were 4-vectors (DMORPH = 0.3). Similar experiments on different

segments of the MMEP data show qualitatively similar results.

We also programmed a network of Grossberg Avalanche neurons,

which learn by a form of the basic Hebb rule. We used them to

verify the basic performance of one of the avalanche architec-

tures, but due to time constraints, we did not employ these

models in any of the structure function experiments. This kind
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of experiment on these models will have to await Phase II

research.

The results of the initial tests have been to illustrate
that the measurement of the relative entropy between two systems

is not a simple matter, as one might already guess from reading

the MAXENT literature (of. (5)). Nevertheless, we have obtained

an algorithm which operates well within the time and memory

constraints imposed by a PC computing environment when the vector
dimension of the combined random signals from two systems is 8 or

less. This is adequate for determining the viability of the

proposed method.
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7. FINDINGS AND ANALYSIS

In the Back Propagation experiments, the structure increased

after learning, but in the Drive-Reinforcement experiments, it

actually went down afterward. Moreover, in the MMEP signal

studies we saw more structure in the simultaneous samples than in

the samples showing both spatial and temporal diversity.

These results seem ambiguous at best. In the case of the

Back Propagation experiments, the structure could hardly fail to

increase after learning, since the "desired" output was known to

be strongly correlated with the input and the BPE network learns

to produce the desired output rather well. Tn the Drive-

Reinforcement experiments, the failure of the structure to rise

after learning is puzzling. It is clearly an indicator that the

D-R learning law does not necessarily enhance correlations

between input and output signals, but then it was not designed to

do that, at least not directly.

We devoted considerable effort to our attempts to understand

these results and to appreciate their implications for both the

design of learning laws and the optimization of architectural

parameters. Eventually, thanks to insistent questioning by our

student assistant, Mr. David Boney, we happened upon the follow-

ing "gedankenexperiment", which shows very clearly that one

cannot naively infer that the best neural network is the one

which generates the greatest value of DMORPH between its input

vector and its output vector.

Suppose that the artificial network were constructed with an

array of "bypass valves" corresponding to each of its inputs, and

that these valves served to proportionately disconnect the

network from its inputs and reroute those inputs directly to the

output terminals. Then, as we turned the dials we would see the

structural similarity between the input signal vector and the

output signal vector improve dramatically toward its theoretical
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maximum, and our infe-rence would lead us to conclude that the

best network architecture was the one that was not there at all!

The problem is not a fault with the .tructure function, but
rather with its application and the inferences drawn from it. We

hasten to point out that what we have done in this project is to
quantify and apply concepts that many neural network and cogni-

tive science researchers have tacitly and qualitatively assumed

to be at work in self-organizing systems. Our experiments have

shown that these assumptions need to be much more carefully

thought out.

What, then, is the measure of a cognitive system? At the
beginning of this work, we dismissed naive self-organization --

at least as it might be measured by information-theoretic

entropy, since that clearly favors mental crystallization. We

now seem driven to dismiss, or at least to severely qualify, the
placement of any value on the network's introduction of cross

correlations between its inputs and its outputs. Parrots are
only amusing for a short while, and networks which merely

associate "desired" outputs with selected clusters of inputs
hardly know what constitutes a surprise, much less do they have

any hope of developing an appropriate response to one.

The defect in these models, insofar as they attempt to

represent basic elements of cognitive systems, is that they pay

too little attention to the fundamental role of tMX

aaadli~z. Even the conditioning models discussed by Klopf (6],
which explicitly account for the temporal ordering of e-vents and

the temporal gradients within excitations, and which do an

admirable job of modeling drives, reflexes, and even the act of
generalization, will probably not emerge into cognitive systems

through the blessings of mere complexity.
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Figure 11. The Neural System Design Problem

Our experiments with time and causality discussed above have

led us to the following description of a learning system, which

pays special attention to its relationship to its environment.

Figure 11 illustrates the situation in a manner which is intended

to be especially significant to mathematicians who may have

studied category theory. Category Theorists are sometimes known

among mathematicians as "arrow chasers". In this case, we are

interested in the fact that there are three paths leading from

the initial state, A, of the observed system to the final state,

B'/B", of the neural system.

One path, which we call the LL path (for Lower Left),

represents the sensors mapping the initial state A of the

observed system into an initial internal representation A'.

Then the neural network transforms that representation into a

final state B" (which may be only an infinitesimal time, dt, away

if we think of these as differential systems).
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Another path, the UR path, represents the observed system

evolving from its initial state A to its final state B,

possibly under the influence of inputs from the outside world.

Then the sensory network maps that final state into the internal

representation, B'.

The third path, called SN (for SiNuous), represents

observation of the initial state, followed by action of the

neural system upon the observed system through motor controls,

which produces a controlled final state B. This final state is

then observed, producing the internal representation, B'.

For the moment, we shall ignore the SN path, and ask how the

network can make TFDC (an acronym known by category theorists to

mean "The Following/Foregoing Diagram Commutes"). That is, how

can the two representations, B' and B", be made to coincide, so

that both the LL and the UR paths produce the same result? The

answer is that it must build within itself a state transition

operator which, when composed with the effect of the sensors,

produces the same result. This is the meaning of "learning" in a

sense which makes essential use of the dynamics of the universe,

including that small part of it called the neural system. It

absolutely must employ a means of comparison between the two

representations, B' and B". We have illustrated that comparison

by the juxtaposition of two state boxes for B' and B", and an

arrow which returns a control signal to the current transition

operator of the network; but we do not mean to imply literally

that there must be two such "slabs" within the network together

with an explicit "metric" between them. That may be the case,

but it may also happen that the sensory map and the cognitive

prediction converge on the same layer to produce a disturbance

away from homeostatic equilibrium at precisely those locations

harboring the pieces of the distributed transition operator which

need correcting.
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It happens that we have, in the process of analyzing these

experiments, constructed both a neural model (a totally novel one

at that) AND an appropriate architecture to imbed it into, which

may achieve these goals. The model is highly preliminary, and

since it was conceived in the final days of analysis and report-

writing, it must be reserved for further development in the Phase

II research.

Now, let us return to the intriguing SN path. This path is

the only thing which distinguishes the cognitive system from a

mere cork on the currents of the universe. There is a technique

in the theory of the Monte Carlo method which is called "impor-

tance sampling", in which the experimenter salts the random data

with certain rare events which are known to have an important

effect on the simulations, but which are too rare to just sit and
wait for in truly random data. In a similar fashion, a cognitive

system requires repetition in order to ferret out the associa-

tions and the invariants which it needs to build its internal

models. But novel events, by definition, do not present them-

selves at frequent intervals. Therefore, the cognitive system

must have a way to salt its observations, and it does this by

manipulating its environment to repeat the novel event or to

inspect it from a different angle so that the tentative learning

(called a hypothesis) can be tested and adjusted before it evapo-

rates. This is a necessary function of the SN path. Essential-

ly, it exists as a means to "salt" the experience of the network

and improve the efficacy of learning. But it can also serve to

drive B' toward B" in the event that learning fails to drive B"

toward B'.

It is tempting to suggest that the entropic structure

analysis, via DMORPH, can once again be brought to bear by using

it to compare the structural similarity between the two represen-

tations, B' and B", but this would not be appropriate. DMORPH

only applies to random vectors and ergodic stochastic processes,

whereas the comparison between B' and B" which is used for
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learning must be almost instantaneously computed on a sample-by-

sample basis. It now seems that the two structures between which

DMORPH might be expected to find similarity are the state tran-

sition operator of the observed system and the state transition

operator of the neural system. In the case of an artificial
neural network, this operator is available in the form of the

matrix of synaptic weights and the associated nonlinear transfer

characteristics, but they must be treated as random operators

(cf., Skorohod [8), for the linear case) or else the entropy will

collapse to zero. If this seems difficult to cLrry out, it is no
doubt far easier than the other half of the problem, which is to

estimate the transition operator of the observed system (except

in the most simple and controlled experimental configurations).

It may well be, as we have alluded to above, that in order to

measure the structural similarities in such complex systems, our

measurement instrument will have to contain the cognitive equiva-

lent of the system it is trying to measure.

In closing this analysis, we would be remiss if we did not

acknowledge the role of experiment in the development of our own

cognitive models of cognitive systems. We have developed a tool,

the DMORPH algorithm, which provided corrective inputs to our

models both by its success in measuring structural similarity in

random signals, and by its success in showing that such structure

is not relevant in the ways that we had presupposed when we

initiated this project. The paths to understanding are often

more sinuous than direct. We had intended that DMORPH should be
applied to the reverse-engineering of the brain in a direct,

gradient ascent assault. Instead, it is in the design and

verification of DMORPH that we found unexpected clues to the
organization of cognitive systems. We expect that this sinuous

path will now be more productive than the original plan.
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8. CONCLUSIONS AND APPLICATIONS

We are confident that cognition is simply not to be under-

stood in isolation from the essential interaction of the cogni-

tive system with the environment which it learns to comprehend.

No neural network, however complex, will exhibit cognition if it

is relegated to passive observation of its environment. The

conclusion here is perhaps the only solid confirmation of a pre-

conceived idea which we had prior to beginning this work: It is

that significant progress with neural networks cannot be expected

without the maintenance of close ties with biology.

This work shows the potential value of stochastic structure

analysis in the design and improvement of neural network models

and it is clear that in six months we have only begun the process

of testing and analysis of the various network designs. Now that

the software tools are available, the structural analysis

deserves to be carried out in a thorough and organized fashion on

many of the existing network architectures to determine whether

and to what degree their learning algorithms record and reproduce

the structure in the signals that they observe.

Although the DMORPH algorithm may not be applicable as

originally planned to an automatic architecture mapping scheme,

it clearly has an immediate utility for the evaluation and

improvement of neural network learning algorithms and transfer

equations. Our intention is to refine the algorithm (its sort

routine could be made faster and less sensitive to multiplicity

of data) and commercialize it as a utility to our commercial

neural network simulation package, SYSPROTM. Furthermore, it is

clear that we can employ both SYSPRO and DMORPH for neural

network design and evaluation for the benefit of the Air Force

and other government agencies who must compare designs and

determine their applicability to their needs.
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thick. These plates were fabricated in 1976 free of . (conductor wxidflh: 1t0 linn; column spacing: 40 pm;
charge by the Siemens Corporation in Munich, Germany. row spacing: 200jnn).
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FROM: Gross, G.WV., W. Wen int J. Liii (18) ransparciijditi-tin oxide patterns [or

cxtraccllular, multisite recordinig in ncurunal cultures. J. Neurosci. Nlcdi. ji: 243-252.
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A~ I' lectrode shunt cafpacitance (curves) in picotarad% on left II-S lerceut or signal ()seen by electrode tip reaching amrplifier
ordinate and shunt inipedancz at I klit (straight lines) ill *Icegolriis as a functisir or shunt impedance Zs and electrode imnpedance 7.
on the right ordinate as a function or insulationr layer thickness. (I kli). Serious signal attenuation occurs at electrode impedance
Calculations were carried our for nmaximurm and iimumiiii conl- above 5 Nli and shu tnt impedances below 30 NISI, Only small ion-
ductor arca.% resulting from different conductor lengths situatedt proverrrerts in electrode perfornmance can he expected fromt increasing
under thie saline pool Solid lires represent cstreirrc values when the shunt imrpedance above 50 hill. Curves were calculated wirh in
a circular open cultrure chamber is utilized (27 nin diamreter). t)otteLj amifiier input impedance (

7
a) of 20 hil (open circles) and IS hill

lines result fromr tre mnaximiumr conductor area uader saline when (solid circles, with 24 equal to 5 hil).
a 25 ntrir x 42 nill closed culture chamnber is used (Ilig. 1). (Relative
dielectric conistantr 4.)

-~ Figs. A4 - A6 From: Gross, G.W. (1979).

Z. (megohms) Simuttaneous single unit recording in vitro
40- with a photoetched laser deinsulated gold

40- multi-microelectrode surface. IEEEE Trans.
30- Biomed. Eng. BME-2: 273-279.
20-

24

A DA
A (0 Lasmer-jinduced electrode deinssnlation and concomitant imnped-

ance chainge at I kit.. (A) Intact gold conductor 12 urm wide and
20 2 muni thick covsered with a 3-4 pilm thick layer of insulation. (Bi)

2 0, 0 Arter single laser shot (337 in11. I X 1010 W/cm2) removed insuta-

8 t(ion fragrments and gold particles call be seen in vicinity of electrode
wtip. (C) Change in magnitude of I kie sinusoidal signal across

u 16-oIT electrode at nmoment of laser exposure (arrow). (D) Sirilair Sig"al
Zl * .GOLD displayed after half-w&ave rectitication on chart recorder. Elcctrode

1-0a gold plated ITO impedance decreases fronti 42 hil to 1.6 hil with one laser shot
~~~l2~~~ /, arid rises slowly to 22NUwti . ln

w 8
0 6

*r Fig. A7 From: Gross, G.W., W.Wen and J. Lin (1985).
1, 2- All1 Transparent indium-tin oxide patterns for extracellular,
_j A ~ multisite recording in neuronal cultures. J. Neurosci.

2 4 6 8 1012 14 16820 24 2 6 3'0 Meth.1i~: 243-252.

t 7 Recording crater imspedarnces as iin'~rse ftinction,, of e~psivecd area it t m r 2 for I 10. gold, aitd ITO)
thsat vas gold phi' .2d irs the crater. Thre li near functin is rcirresetl rorrutalied itnipedairces of 11 30 Mipi n 2

for IT0 and 255 Nil?)a rn2 for gold. 1 he high imipedance for thre I I ()-clectrolvle irterface may be partially
a resuilt of further oxidation of (ine nretal oxide du rinrg laser deinirlahtion. Nt htgl ltn fti
initerface lowxers irtpedances to those estahished for gold cotnductor,;.
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Ft, 48 Typical laser deinsulation patterns in well-cured polysiloxane resin. A: Nomarski micrograph

Cho-ing s'hillow, 35 pmn diameter craters centered on 10,um wide conductors. Note the loss of ITO due to

the single laser shots at an energy dens.ity of 1.5 uJ/mn B and C: phase contrast micrographs or

deinsulation craters formed over 30 p~m and 10 pm wide conductors respectively at energy densities

ranging from 1.5 to 2.2 piJ/pm2.

4'1%4'U;2A'

j1-

*~~ __2i4.h.

tt

rC S
" r3r

V 'k~

t+A7Rcpreieniaii' utilri.' of pinaI neurons grt-n dci N . I,1h I I(), .lis rf sj. I IT) oppearsT

Jiibe . no i osu. sne it tloe no interfe~re usth cel11 ud IIn F"i.;nd I I ueu~sspment I oflidflaci'ii

5 k.i~u uiuuvA anid It: moii~jc clir wclm Cmul D- neuroii froii ( usssk-old
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FROM: Gross, G.W., W. Wen and J. Lin (985). Transparenlt ndtum-ttn oxtdc patterns for

cxtraccllular, multisile rcording inc Uonal culturs. J. Neurosci. Meth. _L5 243-252.
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FIG. AlOa. Top view of assembled closed chamber
0 _ .1and electrode plate holder showing the

multiclectrode plate with its amplifier contact
0 strips (Zebra strips) to either side and a chamber

cover containing the observation window.
2.0- Medium changes are carried out via the two ports

adjacent to the 20mm window.

FIG. AlOb. Side view of closed chamber containing
a 20mm quartz or glass window matched to the

I objective to be used. This arrangement allows
laser cell surgery with Zeiss Uhtrafluar x32 and

t-3-1 x100 objectives that have working distances of

T ~0.45mm and 0. 12m m, respectively.

FROM: Gross. G.W. and NI. Ifightowcr (1986) An approach to the dercrmination vf nctork
propcnics innmammalian nCUronal monolaycr culturcs. in: Prcocccdins of the First IEEE
Confcrcncc on Sythctic Nticrostructurcs in Biological Research. Pcckcrar. MIC.. Shana.

S.A., and Wyatt, R.J. (cds). Pp. 3 -21. WVashingtonl, D.C.: Naval Research Laboratory.

CLIOSED CIRCULATION SYSTEM TO IMIPROVE
ELCCTRO[IfYSIOLOGICAL CULTURE STA13LITY

moist l0% CO 2
in rnrr

CONDITIONING CULTURE

CULTURE AND RECORDING
CHAMBDER

FIG. Al I. Schematic drawing showing the recording chamber atid closed circulatory
system. Thle recording chamber contains about 30O0tl of conditioned medium. To maintain
fll~ and osmnolarity the medium in (fhe recording chamuber is constatitly circulated through
a 10 nil reservoir of conditioned mium. Moist I10%; C0 2 'in air is pumped into tie reservoir

to maintain pil. An in-line 0.22 pil Filter insures sicrility in filc recording chamber.
Pharmacological agents can be added to thle reservoir and pumiped to tlte chamber.
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83 mm

b-- 38 mr I 1
15 mm

20

E RAo b (a) METAL HOLDER FOR MIEP

(b) MULTIMICROELECTRODE
M PLATE (M4EP)

-50 MM_

l~ AI

,, / jlli~li .\ Adhsion Island.

1--- -, it

FIG.-A3, CONFINEMENT OF NETW'IORKS OVER RECORDING AREA VIA SELECTIVE

ADHESION.

The recording area (RA) is a 0.5mm x Imm region in the center of the

glass electrode Plate where all conductors terminate. Cultures must

be confined to this area to simplify the network analysis. The hydro-

phobic insulation material is flamed through masks to generate 
specific

adhesion patterns. The pattern shovn consists of two "1conditioning

areas" to either side of a small (2mm diam) adhesion island (AI) cen-

tered on the recording area. The conditioning areas are necessary 
for

the proocr develooment of neurons. Neuronal connections 
between the

three areas do not develop. Medium continuity exists at all times.

. RI,'
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Left: 1-ig. A14. Monolayer cultures onhMMEPs. A
* 2 inmi diameter inonolaycr culture ccntcercd on ie

* - recording nmatrix of a MMEP 1. Adhesion islands are
generated on dhe nornially hydrophiobic insulation

* layer with a flaming technique though masks. Laser
decinsulation cratcrs are revealed by die halos at the

*if -'Av wi..eds of the conductors. Culture dcnsity: 400

ticurons/mni 2.

FROM: Sci. Ainer. 25:62.

Bottom: Fig. A 15. Center region of a culture on an
* , ITO MMEP 2. Note hat the transparent conductors

I do not interfere with microscopy. The heavy metal
plating in dieo crater is an artifact of thie Bodian
histology method due to precipitation of silver and
gold onto exposed ITO. All conductors are 10 jitr
wide.

0W.

A I I -. 11.1 / . 1,1
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Fig. A16 Multitrace oscilloscope representation of multichannel data. Pg A14
Fig. A17 Typical action potentials
Fig. A18 Typical burst activity
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Fii.fli I Characteristic action potentials and burst
p Itterns. (A) hligh frequency (500hl1z) burst
sh~owin~g decreasring spike amrplitude. (1B) Large
amplitude (1.6niV) action potential from tlhe same
neuron. (C) Smaill (I 4U0V) spike rising fronm a
30;iV noise level. (L)&E) Siinultaiicous burst
patterns onl two electrodes. Note constant spike
amnplitude at low, and decrcascd amplitudes at
high firing frequencies. Low amplitude tonic
activity tront a separate unit is malintained
between bursts in (Ei) Positive deflection is up in .

all traces.

Gross, G.W. and M.L. Hightower (1987) Multielectrodc
investigations of network properties in Neural monolayer 10 ClIANN El. SI i IIiLIANEOUS
Cultures. In: Biomedical Engincering, Recent Advances, BURJST D)ATA
(R.C. Eberhardt, Ed.), McGregor and Werner, Washington; Analohg Stourage scope2;
in press. S%$ eel): 21) nIs

tioiske: 4iV
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,-;'fg Oscilloscope tracings from olfactory co-cultures (dissociated olfactory bulb cells
c'ultured with explants of olfactory neuroepithelium) grown on MMEPs. Upper left: sustained,
rhythmic burst activity; each line contains ten seconds of data and the average amplitude of
each burst is 200gV (peak to peak). Upper right: single unit action potential; the entire
tracing represents 20 misce and the amplitude of the action potential is about ImV (p/p).
Lower left: single unit action potential showing amplitude decay; the entire tracing
represents 10 msec and the amplitude of the largest action potentials are about 800j.V (p/p).
Lower right: expanded tracing of similar tracings to the right illustrating amplitude decay
and waveform alteration; the entire tracing represents 50 mscc and tie amplitude of the
largest action potentials are about 800p (p/p).
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PRESENT COMPUTER HARDWARE

1.0 SCOPE

This document outlines the computational facilities available at the Center for Network
Neuroscience. The principle system is a Masscomp 5700 parallel processing computer.
The Masscomp 5700 is intended for algorithm development, statistical manipulation, and
real time experiment monitoring. The center also has a MicroVax f-r experiment control
and a network of Macintosh Computers for documeiit preparation.

2.0 MASSCOMP 5700

2.1 System Definition

The Masscomp 5700 is a computer mainframe capable of clustering four different types of
specialized processors. The mainframe is developed on the Motorola 68000 family of
computer processors. The processors include a standard CPU, a Data Acquisition and
Control Processor (DACP), a Pipeline Processor, and a Graphics Processor. The current
system configuration employs a single DACP and two of each of the other processors.

The system provides access to two industry standard busses for peripherals as well as a
high-speed main bus. Multibus provides access to standard computer peripherals such as
disk drives and tapes. STD bus is used for experimental instrumentation.

2.1.1 Functional Description

2 1.1.1 The Standard CPU

Masscomp has two different modules that can be used for the standard CPU. The
Center has two of the 68020 modules. The 68020 module contains a 68020 CPU,
68881 Math Coprocessor, an 8K Cache area, and a Multibus Adapter. The math
expansion module, the lightning floating point module, expands the
throughput of the math co-processor on scientific functions. Both of the 68020
modules are equipped with the lighting boards. Each processor is capable of about
3 Mflops a second.

2.1.1.2 The Data Acquisition and Control Processor

The DACP is an 8 MHz bit-slice processor that is intended for realtime
operations. The DACP is located on multibus and provides an adapter to STD bus.
The DACP controls service interrupts from the STD bus modules and load blocks of
read data into main memory. The center currently has four STD bus modules, a
clock, 1 1 MHz A/D, and two sample and hold modules.

2.1.1.3 The Pipeline Processor

The math pipeline processor uses a 7.1 Mltz adder and multiplier pipe to
provide a performance of 14.2 Mflops per second. The system has an
instruction queue for DMA operations as well as for math operation. DMA can be
performed simultaneously with math operations in different sections of the 128KB
of memory.

AiIi II '
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2.1.1.4 Graphics Processor

The graphics processor accepts high level graphic commands for an Aurora
Display. The Auroia is an 1150 x 910 pixel display with 4096 displa,, ,b. ..olors out
of a 16 million color palette. The graphics processor also controls the I/O from the
Aurora keyboard and mouse.

2.1.2 Peripherals

2.1.2.1 Memory

The system is configured with 8 MB of main memory and 6 MB of graphics
memory located on multibus.

2.1.2.2 Maz Storage

The system contains two Fujitsu Eagle disk drives as the principlc mass storage
device. Each Eagle has 387 MB of disk storage. The system is also equipped with a
1/2" tape drive for doing backups and a 5 1/4" floppy disk drive for system
configuration and software Lpdates.

2.1.2.3 I/O

The system has 14 RS-232 Serial Ports and an Ethernet connection. The system
uses two of the RS-232 ports for interfacing to the NTSU broadband network for
terminal access and another RS-232 connection to a 1200 baud modem. The system
is also connected to two dot-matrix printers, and a VT100 that serves as system
monitor.

2.2 Performance

Each standard CPU has a benchmark of 3300 Kwhetstones. Each pipeline processor is
capable of 14.2 Mflops sustained throughput. The combined throughput of two standard
CPU modules and two pipeline processors is estimated at 35 Mflops.

2.3 Physical Attributes

The system is housed in two cabinets. The primary cabinet houses the 30 slot frame for
Masscomp bus and multibus boards, one Eagle hard disk, and two 9 slot STD bus frames.
The second cabinet contains a second Eagle and a tape drive.

2.4 Maintenance and Support

The system is maintained on a service contract that provides for replacement of defective
hardware, as well as software support and routine system maintenance.

p, -/-



---.- U - I I Elli IP U I I I III U I lIE .E, .. . .. . .

Dr. Guenter W. Gross CENTER for NETWORK NEUROSCIENCE North Texas State University
as of May 1988: University of North Texas

3.0 MICROVAX

3.1 System Definition

The MicroVax was purchased to do processor control of lab equipment. The control
process will be done through a CAMAC interface.

3. 1.1 Functional Description

The system is a single board version of the Vax mainframe produced by Digital Equipment
Corporation. The system is equivalent to a 11/785 with a math co-processor %yith sighdy
slower bus hardware.

The system is also equipped with a graphics processor with a display of 1024 x 1024 pixels.
Each pixel can be assigned one of 16 colors selected from a 4096 color palette.

3.1.2 Peripherals

3.1.2.1 Memory

The MicroVax is configured with 3 MB of memory.

3.1.2.2 Mass Storage

The MicroVax has a 70 MB Winchester disk drive with a T50 streaming tape
backup.

3.1.2.3 170

The MicroVax has two RS-232 ports and an Ethernet connection.

3.2 Performance

The MicroVax is benchmarked at 1000 kilowhetstones.

3.3 Physical Attributes

The MicroVax fits into a standard rack mount cabinet using 5" of space.

3.4 Maintenance and Support

The system is being serviced as needed, with billings for time and materials. Software
support is being provided through campus computer center.
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4.0 MACHINTOSH NETWORK

4.1 System Definition

The System is a network of six workstations connected to a laser printer. The system
provides the Center with document formating from personal computers.

4.1.1 Functional Description

4.1.1.1 Network Description

The Network uses Applenet to connect the workstations and laser printer
together. Applenet is a broadband network similar to ethernet with a 1/4 Mhz
bandwidth.

4.1.1.2 Workstation Description

The center has five Mac+ workstations and a Mac 2 workstation. The Mac+ is a IMB
system with a black and white screen. The Mac 2 is a color system with 16 color
pixels and a 40 MB Winchester hard disk.

4.1.1.3 Printers

The main printer is an Apple Laserwriter printer. The Laserwriter is capable of
printing at the rate of 8 pages a minute. Two workstations have 2 dot matrix
printers attached for rough drafts.

4.2 Maintenance and Support

Hardware failures are fixed as needed. Software support is supplied by the vendor.
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1 PROGRAM DTEST
2 C
3 C PROGRAM TO TEST THE "GIBBS" SUBROUTINE (RLD 12/02/87)~
4 C
5 DIMENSION XC8,2048),Y(8,2048), TILEX(256), TILEY(256)
6 INTEGER*2 HISTO(0:255,0:255,, INDEX(2048)
7 C
8 CHARACTER*8 R4NAMES, I4NAMES, LiNAMES
9 REAL*4 R4VALUE

10 INTEGER*4 14VALUE
11 L0GICAL*1 L1VALUE,QUIT,PLOT
12 C
13 COMMON /NLIST/ R4NAMES(21), I4NAMES(21),L1NAMES(7),
14 1 R4VALUE(21),I4VALUE(21),LlVALUE(7)
15' C
16 EQUIVALENCE (SEED,R4VALIE(l),(A,R4VALUE(2))ljB,R4VAL-UE(3)),
17 1 (GOTIME,R4VALUE(4))
18 EQUIVALENCE (NIX, I4VALUE(1)), (NY, I4VALUE(2)), (LEXP, T4VALUE(3)),
19 2 (INISTR,I4VALUE(4)),(IOUNlIT,I4VALUE(5)),(IC,I4VALUE(6)),
20 2 (IPR,I4VALUE(7)),(IDU,I4VALUE(8)),(IFUN.I4VALUE(9)),
21 2 (LDBUG,14VALUE(10)
22 EQUIVALENCE (QUIT,LIVALUE(l))
23 C
24 C
25 NX =
26 NY= 8
27 IC= 8
28 LEN = 255
29 SEED = 2.468E+412
30 A =0.
31 B =1.
32 LEXP = IC * 2**MAX(NX,NY)
33 INSTR =1
34 QU IT=. FALSE.
35 IOUNIT = 6
36 IDU = 0
37 IPR = 0
38 IFUN = 0
39 LDBUG = 0
40 C
41 R4NAMES(1) = 'SEED'
42 R4NAMES(2) = 'A'
43 R4NAMES(3) = 'B'
44 R4NAMES(4) = 'GOTIHE'
45 C
46 14NAMES(1) = 'NX'
47 14NAMES2)i = 'NY'
48 14NAMES(3) = 'LEXP'
49 14NAMES(4) = 'INSTR'
50 14NAMES(5) = 'INPTUNIT'
51 14NAMES(6) = 'IC'
52 I4NAMES(7) = 'PRNTUNIT'
53 14NAMES(8) = 'DATAUNIT'
54 14NAMES(9) = 'IFUN'
55 14NAMES(10)= 'LDBUG'
56 C
57 L1NAMES(1) ='QUIT'

58 C
59 NL1= 4
60 NL2 = 10
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61 NL3 = 1
62 TIME=O.
63 C
64 10 CONTINUE
65 C
66 CALL NAMELIST(IOUNIT, NL1,NL2,NL3)
67 IF(QUIT) STOP
68 ASEED = SEED
69 NHX = 2**NX-1
70 NHY = 2**NY-1
71 NTRIALS = 0
72
73 IF(IDU.GT.0 .AND. GOTIME.LT.TIME) REWIND(IDU)
74 TIME = GOTIME
75 C
76 IF(INSTR.EQ.2) THEN
77 WRITE(9,ll) (R4NAMES(I),R4VALUE(I),I=,NLI'
78 WRITE(9,12) (I4NAMES(I),I4VALUE(I),I=1,NL2)
79 i FORMAT((4(A8,'= ',F8.4,1X)))
80 12 FORMAT('4(A8,'= ',I8,lX)))
81 END IF
82 C
83 C GENERATE OR READ THE DATA
84 PRINT *,' DTEST: Generating random data for X and Y.'
85 C
86 DO 20 ITRIAL = I,LEXP
87
88 IF(IDU.LE.0) THEN
89 CALL QRX(X(1,ITRIAL),NX,Y(IITRIAL),NY,A,B,ASEED,IFUN)
90 ELSE
91 STOP 'DTEST: Real data initialization not available.'
92 C CALL RDATA(XtN,TIME,IDU)
93 END IF
94
95 20 CONTINUE
96
97 IF(LDBUG.GE.3) WRITE(6,902) ((X(I,J),I=1,NX),J=1,LEP)
98 902 FORMAT(8(1X,F8.5))
99
100 C GENERATE THE X AND Y EVENT-SPACE TILINGS
101
102 PRINT *,' DTEST: Generating the X event-space tilings.'
103 CALL UNIVENT(X, NX, TILEX, INDEX, IC, LDBUG)
104 PRINT *,' DTEST: Generating the Y event-space tilings.'
105 CALL UNIVENT(Y, NY,TILEY. INDEX,IC,LDBUG)
106
107 C COMPUTE THE NORMALIZED STRUCTURE INDEX.
108 PRINT *,' DTEST: Computing the no,'malized structure index.'
109
110 DO 100 ITRIAL = 1,LEXP
ill
112 CALL GIBBS(X(1,ITRIAL),NX,TILEX, Y(1,TTRIAL),NY,TILEY, NTRIALS,
113 + HISTO, NHX,NHY, INSTR, HX,HY.H,G,LDBUG)
114
115 IF(INSTR.EQ.2) THEN
116 WRITE(9, 101) H,HX,HY,G
117 101 FORMAT(4(FI2.5,IX))
118 END IF
119
120 100 CONTINUE
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121 C
122 NTR = NTRIALS
123 CALL GIBBS(X,NX,TILEX, Y,NY,TILEY, NTR,
124 + HISTO, NHX.,NHY, 0, HX,HY.H,G,LDBUG)
125 C
126 IF(IPR.NE.6) WRITE(6,901) NTRIALS.SEED,NX,NY,H,HX,HY,G
127 C
128 IF(IPR.GT.O) WRITE(IPR,901) NTRIAT.S,SEED,NX,NY,H,HX,HYG
129 901 FORMAT(' DMORPH EXPERIMENT: # TRIALS = ',15,', SEED =
130 1 F10.7,', X-DIM = ',12,', Y-DIM = ',12,
131 2 /8X,'WHOLE ENTROPY = ',F1O.7,', X ENTROPY = ',FI0.7,
132 3 /8X,'Y ENTROPY = ',F10.7,', DMORPH = ',FlO.7,/)
133 C
134 GO TO 10
135 END

NUMBER OF WARNINGS IN PROGRAM UNIT: 0
NUMBER OF ERRORS IN PROGRAM UNIT: 0

136
137 SUBROUTINE QRX(X,NX,Y,NY,A,B,SEED, IFUN)
138 DIMENSION X(NX),Y(NY)
139 C
140 DO 100 I = 1,NX
141 X(I) = A + (B-A)*URANF(SEED)
142 100 CONTINUE
143 C
144 DO 200 I = iNY
145 Y(I) = A + (B-A)*URANF(SEED)
146 200 CONTINUE
147
148 GOTO(1O1,102,103,104) IFUN
149 GOTO 1000
150 C
151 101 CONTINUE
152 C X(4) = Y(2) + X(4)
153 GOTO 1000
154 C
155 102 CONTINUE
156 X(4) = (Y(2)+X(4))/2.
157 GOTO 1000
158
159 103 CONTINUE
160 DO 1031 I=1,NX
161 1031 X(I) = Y(I)
162 uOTO 1000
163
164 104 CONTINUE
165 X(2) = X(1)
166
167 1000 RETURN
168 END
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NUMBER OF WARNINGS IN PROGRAM UNIT: 0
NUMBER OF ERRORS IN PROGRAM UNIT: 0

189
170 SUBROUTINE RDATA(X,N,T, IDU, ITRIAL)
171 C
172 C This subroutine reads sample data from the file FORTn, where
173 C n = IDU. It skips all records with time-tags less than T,
174 C reads all records with time-tags equal to the time-value first
175 C encountered which is greater than or equal to T, and puts the
176 C next. value of the time-tag into the T variable before returning.
177 C
178 C If you want to interpolate or extend the data between times
179 C existing on the file. you mist do that external to thiq subroutine.
180 C
181 DIMENSION X(N),M(4),R(4)
182
183 IF(ITRIAL.GT.1) GOTO 20
184
185 10 CONTINUE
186
187 READ(IDU,901,END=1200) TT,NX,GX,(M(I),R(I),I=1,4)
188 901 FORMAT(F9.3,1X,Ii,IX,F8.3,IX,4(13,IX,F1O.3.IX))
189
190 20 CONTINUE
191 IF(TT.LT.T) GOTO 10
192
193 DO 100,I=1,4
194 100 IF(M(I).GT.O .AND. M(I).LE.N) X(M(I))=R(I)
195
196 TTl = TT
197 READ(IDU,901,END=100) TT,NX,GX,(M(I),R(I),I=l,4)
198 IF(TT.EQ.TTI) GOTO 20
199 T = TT
200
201 1100 CONTINUE
202 RETURN
203 1200 CONTINUE
204 PRINT *,' NO DATA EXISTS ON INPUT DATA UNIT ',IDU
205 PRINT *,' BEYOND THE REQUESTED TIME T = ',T
206 STOP
207 END

NUMBER OF WARNINGS IN PROGRAM UNIT: 0
NUMBER OF ERRORS IN PROGRAM UNIT: 0

NUMBER OF WARNINGS IN COMPILATION : 0
NUMBER OF ERRORS IN COMPILATION 0
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1 SUBROUTINE UNIVENT(X, NX, THRESH, INDEX, IC, LDBUG)
2
3 ***********************************************************************
4 C This routine determines the SUM (i=l,K) 2**(I-I) threshholds
5 C which will divide the k-dimensional space into regions that
6 C will have an equal amounts of counts when the sample is
7 C drawn from the same underlying distribution which generated
8 C the c*2**K vectors used by this program to set the boundaries.
9 C If IC=4, K=8 and the data is found on IUNIT = 1 then the num.

10 C of threshholds which need to be found are 1+2+4+8+16+32+64+128
11 C or 255 based on the 512 data vectors.
12 *****************+***************************************************
13
14 **************************** *******************************************
15 C
16 C IC is the integer multiple of the min. # of samples(2**NX).
17 C NX is the sample vector dimension.
18 C NSAMPLE = IC * 2 ** NX, is the number of samples.
19 C NTHRESH = 2 ** NX - 1, is the total number of thresholds.
20 C DATA(I,J), i=l,1,X ), J=1,NSAMPLE ) is the sampled data.
21 C THRESH is the array in which the thresholds are stored.
22 C LTHR is the length of THRESH and must = -1+2**NX
23 C INDEX is a workspace integer array of length NSAMPLE.
24 C
25 C The calling sequence for UNIVENT is as follows;
26 C CALL UNIVENT( X, NX, THRESH, LTHR, IC
27 C
28 **************************** *********************************
29
30 DIMENSION THRESH(*)
31 INTEGER*2 INDEX(*)
32
33 C NOTE: The first X-dimension (below) MUST be exactly the same as
34 C as in the calling program, even if NX may be different!
35
36 DIMENSION X(8,*)
37
38 C If your data is integer, remove the comment from column 1
39 C of the next line of code.
40 C INTEGER DATA,DATAT
41
42
43 NSAMPLE = IC* 2 **NX
44 NTHRESH = 2 **NX- 1
45 C
46 C Initialize the index array.
47 C
48 IF(LDBUG.GE.1) PRINT 4, 'NSAMPLE ',NSAMPLE, NTHRESH ',NTHRESH
49
50 DO 1I0 =1 NSAMFLE
51 INDEX(I) = I
52 10 CONTINUE
53

55 C
56 C For each of the NX dimensions, I, of the data vector, we
57 C determine the 2**(I-1) thresholds which divide the space into
58 C approximately equal (based on the sample) probability bins given
59 C that we have already divided the space for all dimensions less
60 C than i and we consider for each of the 2**(I-l) thresholds
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61 C only the sample data in one of the previous 2**(I-l-1) bins.
62 C For example, if I=I, all of the sample is divided into one of two
63 C bins based on the value of the 1st component of the NSAMPLE
64 C NX-vectors. Based on this 2**(1-l)=1 threshold and the
65 C value of the 2nd component of the data vectors in each of the two
66 C subsets of the NSAMPLE data points, these subsets are then divided
67 C with 2**(2-1)=2 thresholds. The threshold used is the median of
68 C the sampled component.
69 C
70 *C**************************************************** ********************

71
72 NS = 1
73 IC2PNXI = IC * 2**(NX+l)
74 DO 130 I = 1 NX
75
76 JSTOP = 0
77 IC2PNXI = IC2PNXI/2
78 JSTART= I-IC2PNXI
79
80
81 DO 120 L = I , NS
82
83 JSTART = JSTART + IC2PNXI
84 JSTOP = JSTOP + IC2PNXI
85
86
87 IF(LDBUG.GE.3) THEN
88 WRITE (6,*) 'JSTART ',JSTART,' JSTOP ',JCTOP,' I,L ',I,L
89 WRITE (6,1002) (INDEX(M), M=l,NSA',4PLE ),2**(I-l)+L-1
90 END IF
91

93 C This code sorts the data array IDATA w.r.t. it's Ith
94 C component (column) for the data values corresponding to
95 C INDEX(JSTART),INDEX(JSTART+I)......INDEX(JSTOP).
96 *** *********************************************************************
97
98 DO 110 J = JSTART+I, JSTOP
99
100 INDEXT = INDEX (J)
101 DATAT = X(I,INDEX(J))
102
103 IF(LDBUG.GE.4)
104 1 WRITE (6,*) 'J ',J,' INDEXT ',INDEXT,' DATAT ',DATAT
105
106 DO 100 K = J-1, JSTART, -1
107
108 IF(LDBUG.GE.5) THEN
109 WRITE (6,*) 'K, DATAT, INDEX(K) ',K,DATAT.INDEX(K)
110 WRITE (6,*) 'X(I,INDEX(K)) ',X(I,INDEX(K))
il END IF
112
113 IF ( DATAT .LT. X(I,INhEX(K)) ) THEN
114
115 INDEX(K+1) = INDEX(K)
116 INDEX(K) = INDEXT
117
118 IF(LDBUG.GE.5) THEN
119 WRITE (6,*) 'TEST DATA < DATA ABOVE,BUBBLE UP'
120 WRITE (6,*) 'J ',J,' INDEX(J) ',INDEX(J)
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121 WRITE (6,*) 'K ',K,' INDEX(K) ',INDEX(K)
122 END IF
123
124 ELSE
125
126 IF(LDBUG.GE.5) WRITE (6,*) 'TEST DATA > DATA ABOVE, NEXT J'
127
128 GOTO 110
129
130 ENDIF
131
132 100 CONTINUE
133
134 110 CONTINUE
135
136 C*
137 C Now use the sorted data to determine the median/threshold.
138 C******.******..*******4***********~*****
139
140 MIDINDEX = INT ( ( JSTOP + JSTART ) / 2
141
142 C If your data is integer, remove the comment from column 1
143 C of the next three lines of code, and comment out the
144 C non-floated definition of THRESH.
145 C THRESH(2**(I-l)+L-1)=
146 C + ( FLOAT ( X(I, INDEX(MIDINDEX) ) ) +
147 C + FLOAT ( X(I, INDEX(MIDINDEX+1) ) ) ) / 2.
148
149 THRESH(2**(I-1)+L-I)=
150 + ( X( I, INDEX(MIDINDEX) ) +
151 + X( I, INDEX(MIDINDEX+I) ) ) / 2.
152
153 IF(LDBUG.GE.3) THEN
154 WRITE (6,*) 'THRESH(',2**(I-1)+L-1,')',
155 + THRESH(2**(I-1)+L-1)
156 WRITE (6,*) ' MIDINDEX ',MIDINDEX
157
158 WRITE (6, 1002) (INDEX(M), M=1,NSAMFLE ),I,2**(I-1)+L-1
159 WRITE (6,1001) (THRESH(M), M=I,NTHRESH )
160 END IF
161
162 120 CONTINUE
163 NS = 2*NS
164
165 130 CONTINUE
166
167 IF(LDBUG.GE.2) THEN
168 WRITE (6,1001) (THRESH(M), M=1,NTHRESH
169 WRITE (6,1004) ((I,J,X(J,INDEX(I)), .T=I,NX ),I=1,NSAMPLE )
170 END IF
171
172
173 1001 FORMAT(10(IX,F7.3))
174 1002 FORMAT(20(IX,I3) )
175 1003 FORMAT( F9.0, 1IX, 4 ( 1X, 13, IX, FIO.4 ) )
176 1004 FORMAT(5(1X,13,lX,Tq.1X,F7.4))
177
178 RETURN
179 END
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NUMBER OF WARNINGS IN PROGRAM UNIT: 0
NUMBER OF ERRORS IN PROGRAM UNIT: 0

NUMBER OF WARNINGS IN COMPILATION : 0
NUMBER OF ERRORS IN COMPILATION : 0
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1 SUBROUTINE GIBBS(X, NX,TILEX,Y,NYTILEY,NTRIALS,
2 1 HISTO, NHX, NHY, INSTR, HX, HY, H,G,LDBUG)
3
4 C This subroutine computes three entropies associated with two
5 C random vectors X and Y, of dimensions NX and NY. H is the
6 C entropy of the concatenated vectors after NTRIALS of the ex-
7 C periment. HX and HY are the separate entropies of X and Y
8 C after NTRIALS. G = HX+HY-H is the Gibbs relative entropy
9 C of the combined system. All entropies are computed with res-
10 C pect to the tiling of the event space specified by the TILE
11 C arrays.
12
13 DIMENSION X(NX),Y(NY),TILEX(*),TILEY(*)
14 INTEGER*2 HISTO(O:NHX,0:NHY)
1.5 PARAMETER (ALN2=O.6931471)
16
1.7 IF(INSTR .EQ. 0) GO TO 310
18 NTRIALS = NTRIALS+1
19
20 C IDENTIFY THE X-EVENT NUMBER
21
22 KX = 0
23 LEVEL = 1
24
25 DO 10 J=1,NX
26 IF( X(J) .GT. TILEX(LEVEL+KX) ) KX = LEVEL + KX
27 LEVEL = 2*LEVEL
28 10 CONTINUE
29
30 C IDENTIFY THE Y-EVENT NUMBER
31
32 KY = 0
33 LEVEL = 1
34
35 DO 20 J=1,NY
36 IF( Y(J) .GT. TILEY(LEVEL+KY) ) KY = LEVEL + KY
37 LEVEL = 2*LEVEL
38 20 CONTINUE
39
40 IF(LDBUG.GE.1) THEN
41 PRINT *,'X = '
42 PRINT *,(X(I),I=1,NX)
43 PRINT *,' X-EVENT I.D. = ',KX
44 PRINT *
45 PRINT *,'Y =
46 PRINT *,(Y(I),I=I,NY)
47 PRINT *,' Y-EVENT I.D. = ',KY
48 END IF
49
50 C BUMP THE COUNT FOR THE IDENTIFIED COMPOSITE EVENT
51
52 HISTO(KX,KY) = HISTO(KX,KY) + 1
53
54 IF( INSTR .EQ. 1 ) RETURN
55
56 310 CONTINUE
57
58 C COMPUTE THE ENTROPIES ASSOCIATED WITH THE ACCUMULATED HISTOGRAM.
59
60 H = 0.
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61 HX= 0.
62 HY= 0.
63 FLN = FLOAT(NTRIALS)
64
65 DO 330 L=O,NHX
66 MARX = 0
67 DO 320 J=O,NHY
68 P = FLOATHISTO(I,J))/FLN
69 IF(P.GT.0) H = H - P*LOG(P)
70 MARX = MARX+HISTO(I,J)
71 320 CONTINUE
72 PX = FLOAT(MARX)/FLN
73 IF(PX.GT.0) HX = HX - PX*LOG(PX)
74 330 CONTINUE
75
76 DO 350 J=O,NHY
77 MARY = 0
78 DO 340 I=O,NHX
79 MARY = MARY+HISTO(I,J)
80 340 CONTINUE
81 PY = FLOAT(MARY) /FLN
82 IF(PY.GT.O) HY = HY - PY*LOG(PY)
83 350 CONTINUE
84
85 C COMPUTE THE NORMALIZED STRUCTURE FUNCTION
86 C G = 2.*(HX+HY - H)/((NX+NY)*ALN2) [ SUPERCEDED ]
87 HX HX/ALN2
88 HY H HY/ALN2
89 H = H /ALN2
90 SUPHXHY = FLOAT(NX+NY)
91. AMINH = AMAX1(HX,HY)
92 G = (HX+HY-H)/(SUPHXHY-AMINH)
93
94 IF( INSTR .EQ. 2 ) RETURN
95
96 C RESET THE HISTOGRAM TO ZERO FOR THE NEXT EXPERIMENT.
97
98 DO 420 I=O,NHX
99 DO 410 J=O,NHY
100 HISTO(I,J) = 0
101 410 CONTINUE
102 420 CONTINUE
103 NTRIALS = 0
104
105 RETURN
106 END

NUMBER OF WARNINGS IN PROGRAM UNIT: 0
NUMBER OF ERRORS IN PROGRAM UNIT: 0

NUMBER OF WARNINGS IN COMPILATION : 0
NUMBER OF ERRORS IN COMPILATION : 0
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1 SUBROUTINE NAMELIST(IOUNIT,N1,N2,N3)
2C
3 C The following declarations are for local variables.
4 CHARACTER LINE*72,NAME*8,NVAL*72
5C
6C
7 C This program is intended to approximate thiu NAMELIST capability
8 C which some FORTRAN compilers have, but which RM-FORTRAN does not
9 C have. The calling program needs to have a common block labeled
10 C /NLIST/ and containing six arrays:
11 C
12 CHARACTER*8 R4NAMES
13 REAL*4 R4VALUE
14 C
15 CHARACTER*8 I4NAMES
16 INTEGER*4 I4VALUE
17 C
18 CHARACTER*8 LINAMES
19 LOGICAL*1 LIVALUE
20 C
21 COMMON /NLIST/ R4NAMES(21),I4NAMES(21),LINAMES(7),
22 1 R4VALUE(21),I4VALUE(21),LlVALUE(7)
23 C
24 IF(N1.GT.21.OR. N2.GT.21.OR. N3.GT.7) THEN
25 PRINT *,'NI or N2 or N3 is too large for NAMELIST.'
28 PRINT *,'Increase dimensions in /NLIST/ common, and'
27 print *,'increase limits in first statement of NAMELIST.'
28 STOP
29 END IF
30 C
31 1 CONTINUE
32 C
33 IF(IOUNIT.EQ.6) THEN
34 PRINT *,'ENTER VARIABLE NAMES FOLLOWED BY VALUES ACCORDING TO'
35 PRINT *,'THE SYNTAX, name = value <CR>. SPACES ARE OPTIONAL.'
36 PRINT *,'LEGAL NAMES AND CURRENT VALUES ARE:'
37 PRINT *
38 WRITE(6,2) (R4NAMES(J),R4VALUE(J),J=1,N1)
39 WRITE(6,3) (I4NAMES(J),I4VALUE(J),J=1,N2)
40 WRITE(6,4) (LlNAMES(J),L1VALUE(J),J=1,N3)
41 2 FORMAT((4(2X,A8,'['.F8.3,'J')))
42 3 FORMAT((4(2X,A8,'[ ',16,' 1')))
43 4 FORMAT((6(2X,A8,'[ ',Ll,' I')))
44 PRINT *
45 PRINT *,'IF YOU GOOF, JUST RE-ENTER THE LINE CORRECTLY.'
46 PRINT *,'ANY LINE NOT HAVING THE = SIGN IN IT TERMINATES ENTRY,'
47 PRINT *,'EXCEPT "?" DISPLAYS VALUES AND "#" STOPS THE PROGRAM.'
48 PRINT *
49 END IF
50 C
51 10 CONTINUE
52 C
53 READ(IOUNIT,12,END=100) LINE
54 12 FORMAT(A72)
55 IF(LINE.EQ.'#') STOP ' **** User STOP in NAMELIST'
56 IF(LINE.EQ.'?') GOTO 1
57 NEQ = INDEX(LINE,'=')
58 IF(NEQ.EQ.0) GOTO 100
59 C IF(LINE.EQ.'QUIT') THEN
60 C LINE='QUIT=T'
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61 C GOTO 13
62 C END IF
63 C GOTO 100
64 C END IF
65
66 13 CONTINUE
67
68 NAME=LINE(1:NEQ-1)
69 NVAL=LINE(NEQ+1:72)
70 C
71 DO 20 I=1,Nl
72 IF(NAME.EQ.R4NAMES(I)) THEN
73 IF(INDEX(NVAL,'.').EQ.O) THEN
74 NPT = INDEX(NVAL,'
75 NVAL(NPT:NPT) =
76 END IF
77 READ(NVAL, 15) R4VALUE(I)
78 15 FORMAT(F15.5)
79 C PRINT *, R4NAMES(I),' = ',R4VALUE(I)
80 C PRINT *
81 GO TO 10
82 END IF
83 20 CONTINUE
84 C
85 DO 30 I=1,N2
86 IF(NAME.EQ.I4NAMES(I)) THEN
87 READ(NVAL,25) I4VALUE(I)
88 25 FORMAT(I15)
89 C PRINT *, I4NAMES(I),' = ',I4VALUE(I)
90 C PRINT *
91 GO TO 10
92 END IF
93 30 CONTINUE
94 C
95 DO 40 I=1,N3
96 IF(NAME.EQ.L1NAMES(I)) THEN
97 32 CONTINUE
98 NDXT = INDEX(NVAL,'T')
99 NDXF = INDEX(NVAL,'F')
100 IF(NDXT*NDXF .NE. 0 .OR. (NDXT+NDXF).EQ. 0) THEN
101 PRINT *,NAME,'IS A LOGICAL VARIABLE. ENTER T OR F >
102 READ(6,12) NVAL
103 GO TO 32
104 END IF
105 IF(NDXT.NE.0) NVAL='.TRUE.'
106 IF(NDXF.NE.0) NVAL='.FALSE.'
107 READ(NVAL, 35) LIVALUE(I)
108 35 FORMAT(L1S)
109 C PRINT *, LINAMES(I),' = ',LIVALUE(I)
110 C PRINT *
111 GO TO 10
112 END IF
113 40 CONTINUE
114 C
115 PRINT *,'VARIABLE NAME ',NAME,' NOT RECOGNIZED.'
116 PRINT *,'INPUT CONTINUES...'
117 GO TO 1
118 C
119 100 CONTINUE
120 PRINT *,'User input complete.'
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121 PRINT *
122 RETURN
123 END

qUMBER OF WARNINGS IN PROGRAM UNIT: 0
UMBER OF ERRORS IN PROGRAM UNIT: 0

124

4UMBER OF WARNINGS IN COMPILATION 0
qUMBER OF ERRORS IN COMPILATION : 0
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1 C*
2 C* 4*
3 C* H HAR R Y NE T
4 C**
b C* * A RECONFIGURABLE 80-NEURON 'ETWOR( MODEL
6 0* WHICH LEARNS BY THE DRIVE-REINFORCEMENT LAW
7 c* .'***********.********I*****

a C*
9 C*
10l' SUBROUTINE HARRYNtET(T, KSROOT, KIROOT, KOROO 'T)
11 INCLUDE '\.SYSPRO",COMNSH. INC'
12 C******
13 C \SYSPRO\COMNSH. INC -- Abbreviated labeled commoni arrays, for use
14 C in all subroutines except EVOLVE.
15 C NEVER CHANGE ANYTHING IN THIS FILE.
16 C Use an INCLUDE statement to use these common arrays in any
17 C SYSPRO subroutine.
18 C
19 COMMON /STATSP/ STATEV( 1)
20 COMMON /KSNAME/ KSNAME(2, 1 )
21. COMMON /INPSP / RINPUT( 1)
22 COMMON /KINAME/ KINAME(2, 1)
23 COMMON ,OUTPSP/ OUTPUT( 1)
24 COMMON /KONAME/ KONAME(2, 1)
25 COMMON /OUTINT/ OUTINT(2, 1)
26 COMMON /TIME / TIME
27 CHARACTER*12 KSN AME, KINAME, KONAME, ISYSNIM*6
28 COMMON /SIMVAR/ ENIDTIM,MIODE,DELTAT, TIMIN-C,NPRIN4T, AUDIT, RANL DOM,
29 1 NSYS, NXTSUB, ISYS( 7,110), ISUB( 0:220), ISYSNIM( 110)-,
30 1 NPLOTS, NSKIP, KURVIE( 5,51), NPAGE, RSMI1, RSMAX, RSEED
31 LOGICAL AUDIT, RANDOM
32 COMMON / DTG / ISEC, IMINI,IHR, IDAY, IMO, IYR,
33 1 JSEC, JMIN, JHR, JDAY, JM0, JYE,
34 1 KSEC, KM IN, KHR, KDAY,KMO, KYR
35 COMMON /TITLE / ITITLE(40,5),IDATE,ITIME
36 CHARACTER ITITLE*2, IDATE*9, ITIME*8
37 C
38 C****** END OF \SYSPRO\COMNSH. INC
39 INCLUDE '\BPNET\RUMDAT.INC'
40 COMMON /RUHDAT/ GAMMA(4),PARMTHR(5,O:4)
41 COMMON /NETWORK/ NIUMINIPT, INPUT( 50), NUMNIEUR, NEURN1(100),
42 1 NEDGE(2,5100),EDGEWT(5100),NFANINl(4,100)
43 C
44 C***
45 C COMMON /WORKSP/ W(20,9)
46 0* EXACTLY AS IN MAIN PROGRAM.
47 C
48 C VARIABLE NAMING SECTION
49 C
50 C
51 CHARACTER*12 LSYSNM
52 CHARACTER*12 T,SNAME(2, 1), LINAME(2,50), LONAME(2,50)
53 0*
54 C* -KSLEN =KILEN =KOLEN

55 C
56 DIMENSION KVNDX( 3, 0:80)
57 C
58 C THE NUMBER OF SUBSYSTEMS, N = NSUBS, IS:
590C* v
60 DATA NSUBS / 80/
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61 C
62 C THE LENGTHS OF THE "SYSMODEL" SYSTEM VECTORS (EXCLUDING
63 C SYSI - SYSN) ARE:
64 C
65 C* STATEV :: KSLEN = vv ( MUST = 0 FOR COMPOSITE SYSTEM)
66 DATA KSLEN / 0/
67 C* RINPUT :: KILEN =vv
68 DATA KILEN / 50/
69 C* OUTPUT :: KOLEN =vv
70 DATA KOLEN / 50/
71 C
72 C THESE VALUES ARE REPORTED TO THE CALLING PROGRAM BY THE
73 C "AUDIT" SECTION IF AUDIT = .TRUE.
74 C
75 C IF N>1 THEN THIS IS A COMPOSITE SYSTEM AND IT EVOLVES THE
76 C STATEV INDIRECTLY BY FIRST EXECUTING THE CROSSTALK FUNCTIONS
77 C (01. N) TO ADJUST THE INPUTS TO THE SUBSYSTEMS AND THEN
78 C BY CALLING THE SUBSYSTEM MODELS (SYSI,..., SYSN).
79 C
80 C INTERMEDIATE VALUES (NOT REQUIRED TO BE KNOWN UPON ANY ENTRY
81 C INTO THIS SYSMODEL SUBROUTINE) SHOULD BE EQUIVALENCED TO
82 C THE WORKSPACE VECTOR, W , TO SAVE SPACE. DO THIS NOW:
83 C
84 C*. EQUIVALENCE ( W( 1,1), TEMPI
85 C* (ETC.)
86 C
87 C STATE INPUT OUTPUT
88 DATA KVNDX/ 1,1,1,1, 51, 51,
89 1 237*0 /
90 C NOTE: The remaining components of the KVNDX array will be com-
91 C puted in the AUDIT SECTION below, on the assumption that
92 C the NEURON subsystems each have 60 statevector components,
93 C 60 inputvector components, and 6 outputvector components.
94 C
95 C SYSTEM NAME:
96 DATA LSYSNM/ 'KLOPF'
97 C*
98 C
99 C THE LENGTH OF THE HISTORY SEGMENT FOR EACH SYNAPSE IS:
100 DATA LHIST/6/
101
102
103 C STATEMENT FUNCTION SECTION
104 C
105 C
106 C NDS(J) IS THE INDEX OF THE J-TH ENTRY OF THE STATE VECTOR
107 C OF THIS SYSTEM (I.E., RELATIVE TO KSROOT), AND SIMILARLY FOR
108 C NDI(J) AND NDO(J).
109 C
110 NDS(J) = J + KSROOT
ill NDI(J) = J + KIROOT
112 NDO(J) = J + KOROCT
113 C
114 C NRS(I) IS THE INDEX OF THE ROOT OF THE STATE VECTOR OF THE
115 C I-TH SUBSYSTEM OF THIS SYSMODEL. (ETC. FOR NRI, NRO)
116 C
117 NRS(I) = KSROOT + KVNDX(1, I) - 1
118 NRI(I) = KIROOT + KVNDX(2,I) - 1
119 NRO(I) = KOROOT + KVNDX(3,I) - 1
120 C
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121 C THE FOLLOWING STATEMENT FUNCTIONS SIMPLIFY REFERENCES TO THE
122 C SYSTEM VECTOR ELEMENTS. THEY MAY BE USED ONLY ON THE RIGHT
123 C SIDE OF AN ASSIGNMENT STATEMENT. ON THE LEFT SIDE OF AN
124 C ASSIGNMENT STATEMENT, THE FULL REFERENCE MUST BE USED.
125 C
126 ST(I) = STATEV(NDS(I))
127 RI(I) = RINPUT(NDI(I))
128 OU(I) = OUTPUT(NDO(I))
129 STSUB(J,I) = STATEV(NRS(J)+I)
130 OUSUB(J.I) = OUTPUT(NRO(J)+I)
131 C
132 C
133 C
134 C AUDIT SECTION
135 C
136 C
137 1000 CONTINUE
138 IF(.NOT. AUDIT) GO TO 2000
139 C
140 IF(NUMNEUR.GT.NSUBS .OR. NUMNEUR.LT.1) GOTO 5100
141 C
142 NSUBS = NUMNEUR
143 DO 1010 I=2,NSUBS
144 KVNDX(1,I) = KVNDX(1,1) + (I-1)* 60
145 KVNDX(2,I) = KVNDX(2,1) + (I-l)* 63
146 KVNDX(3,I) = KVNDX(3,1) + (I-1)* 7
147 1010 CONTINUE
148 C
149 C INITIALIZE SYSTEM VECTOR LABELS
150 DO 1020 J=1,50
151 WRITE(LINAME(I,J).1091) J
152 1091 FORMAT('NET '.12,' INPUT')
153 WRITE(LINAME(2,J).1093)
154 1093 FORMAT('FIRING RATE ')
155 WRITE(LONAME(I,J),1095) J
156 1095 FORMAT('NET ',12,' OUTPT')
157 WRITE(LONAME(2,J), 1096)
158 1096 FORMAT('SIGNAL 1)
159 1020 CONTINUE
160 C
161 CALL SYSAUD( NSUBS, KSROOT, KIROOT, KOROOT, KSLEN, KILEN, KOLEN,
162 1 LSYSNM. LSNAME, LINAME, LONAME)
163 C
164 C SKIP THE SUBSYSTEM CROSSTALK SECTION DURING AUDIT.
165 GO TO 3000
166 C
167 C ******************
168 C
169 C SUBSYSTEM CROSSTALK SECTION
170 C
171 2000 CONTINUE
172 C
173 C DISTRIBUTE EXTERNAL INPUTS TO THEIR DESIGNATED SYNAPSES.
174 C
175 DO 2100 J = 1,NUMINPT
176 Y = RI(J)
177 IEDGE = INPUT(J)
178 N = NEDGE(1.IEDGE)
179 IF(N.EQ.O .OR. IEDGE.EQ.O) GO TO 2100
180 DO 2050 K = IEDGE+1,IEDGE+N
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181 NN = NEDGE(1,K)
182 C = DESTINATION NEURON
183 KSYN = NEDGE(2,K)
184 C = DESTINATION SYNAPSE # ON DEST'N NEURON
165 IF(KSYN .EQ. 0) THEN
186 OUTPUT(NRO(NN)+2) = Y
187 ELSE
188 C SHIFT PRIOR INPUTS TO RIGHT
189 JSYN = NRI(NN) + (KSYN-1)*(LHIST+I)
190 DO 2040 JL = LHIST,1,-l
191 JPL = JSYN + JL + 1
192 RINPUT(JPL) RI(JPI,-I)
193 2040 CONTINUE
194 RINPUT(JSYN+1) = Y*EDGEWT(K)
195 END IF
196 2050 CONTINUE
197 2100 CONTINUE
198 C
199 C WARNING: The /NETWORK/ common block violates the system simulation
200 C rules. This network cannot be assembled into a larger
201 C system. Fold it into /RINPUT/ before trying to include
202 C BPNET into any larger SYSPRO system.
203 C
204 C
205 C
206 C STATE EVOLUTION SECTION
207 C
208 3000 CONTINUE
209 C
210 C
211 DO 3010 J = 1,NUMNEUR
212 CALL KLOPFON(T,NRS(J),NRI(J),NRO(J))
213 3010 CONTINUE
214 C
215 IF( AUDIT ) RETURN
216 C* GO TO 4000
217 C
218 C ***** *************** *****
219 C
220 C READOUT SECTION
221 C
222 4000 CONTINUE
223 C
224 C NOTE: EACH SUBSYSTEM HAS ITS OWN READOUTS. THE ONLY READOUTS
225 C THAT SHOULD BE INCLUDED HERE ARE THOSE THAT USE STATEV
226 C COMPONENTS WHICH ARE NOT ALL MEMBERS OF A SINGLE SUB-
227 C SYSTEM STATE VECTOR.
228 C
229 C DISTRIBUTE EACH NEURON'S OUTPUTS TO THEIR DESIGNATED SYNAPSES
230 C
231 DO 4200 J = 1,NUMNEUR
232 IEDGE = NEURN(J)
233 N = NEDGE(1, IEDGE)
234 IF(IEDGE.EQ.O .OR. N.EQ.O) GO TO 4200
235 DO 4150 K = IEDGE+I,IEDGE+N
236 IF(NEDGE(1,K).NE.O) THEN
237 DO 4130 L=1,LHIST+I
238 KL = NRI(NEDGE(1,K))+NEDGE(2.K)+L-1
239 RINPUT(KL) = OUSUB(J,L)*EDGEWT(K)
240 4130 CONTINUE
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241 ELSE
242 OUTPUT(NDO(NEDGE(2,K))) OUSUB(J,I)
243 END IF
244 4150 CONTINUE
245 4200 CONTINUE
246 C
247 C
248 4999 RETURN
249 C
250 C
251 C ERROR RECOVERY SECTION
252 C
253 5000 CONTINUE
254 C
255 5100 PRINT 5900, NUMNEUR,NSUBS
256 STOP
257 5900 FORMAT(' SUBROUTINE BPNET - ERROR: YOU HAVE ',I4,' NEURONS.'/
258 1 ARRAY DIMENSIONS ONLY ALLOW ',14,' ',/)
259 C
260 END

NUMBER OF WARNINGS IN PROGRAM UNIT: 0
NUMBER OF ERRORS IN PROGRAM UNIT: 0

NUMBER OF WARNINGS IN COMPILATION : 0
NUMBER OF ERRORS IN COMPILATION " 0
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1 C* ******** ******** *****************************: *
2C* *C
3C* * KLOPFON *
4 C* * *
5 C* * BASIC PROCESSING ELEMENT MODEL FOR DRIVE- •
6 C* * REINFORCEMENT NEURON MODEL FOR BIOMASSCOMP •
7 C*
8 C* JANUARY, 1988
9 C*
10 SUBROUTINE KLOPFON(T, KSROOT, KIROOT, KOROOT)
11 C***
12 INCLUDE '\SYSPRO\COMNSH.INC'
13 C******
14 C \SYSPRO\COMNSH. INC -- Abbreviated labeled common arrays, for use
15 C in all subroutines except EVOLVE.
16 C NEVER CHANGE ANYTHING IN THIS FILE.
17 C Use an INCLUDE statement to use these common arrays in any
18 C SYSPRO subroutine.
19 C
20 COMMON /STATSP/ STATEV( 1)
21 COMMON /KSNAME/ KSNAME(2, 1)
22 COMMON /INPSP / RINPUT( 1)
23 COMMON /KINAME/ KINAME(2, 1)
24 COMMON /OUTPSP/ OUTPUT( 1)
25 COMMON /KONAME/ KONAME(2, 1)
26 COMMON /OUTINT/ OUTINT(2, 1)
27 COMMON /TIME / TIME
28 CHARACTER*12 KSNAME.KINAME,KONAME, ISYSNM*6
29 COMMON /SIMVAR/ ENDTIM, MODE, DELTAT, TIMINC, NPRINT, AUDIT,RANDOM,
30 1 NSYS,NXTSUB,ISYS(7,110),ISUB(O:220),ISYSNM(110),
31 1 NPLOTS, NSKIP,KURVE(5,51),NPAGE,RSMIN,RSMAX,RSEED
32 LOGICAL AUDIT, RANDOM
33 COMMON / DTG / ISEC, IMIN, IHR, IDAY, IMO, IYR,
34 1 JSEC,JMIN,JHR,JDAYJMO,JYR,
35 1 KSEC,KMIN,KHR,KDAY,KMO,KYR
36 COMMON /TITLE / ITITLE(40,5),IDATE,ITIME
37 CHARACTER ITITLE*2, IDATE*9, ITIME*8
38 C
39 C****** END OF \SYSPRO\COMNSH. INC
40 INCLUDE '\BPNET\RUMDAT.INC'
41 COMMON /RUMDAT/ GAMMA(4),PARMTHR(5,O:4)
42 COMMON /NETWORK/ NUMINPT, INPUT(50),NUMNEUR, NEURN(100),
43 1 NEDGE(2,5100),EDGEWT(5100),NFANIN(4,100)
44 C
45 C***
46 C* COMMON /WORKSP/ W(20,9)
47 C* EXACTLY AS IN MAIN PROGRAM.
48 DIMENSION C(5)
49 CHARACTER*1 LETTER(0:5)
50 C
51 C
52 C VARIABLE NAMING SECTION
53 C
54 C
55 CHARACTER*12 LSYSNM
56 CHARACTER*12 LSNAME(2,60), LINAME(2,63), LONAME(2, 7)
57 C*
58 C* = KSLEN KILE= KOLEN
59 C
60 DIMENSION KVNDX( 3, 1)
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61 C* THIS NUMBER MUST = MAX(1,NSUBS)
62 C
63 C* EXTERNAL DIFFEQ
64 C* ... AND ANY OTHER EXTERNAL DECLARATIONS.
65 C
66 C THE NUMBER OF SUBSYSTEMS, N = NSUBS, IS:
67 C* v
68 DATA NSUBS / 0/
69 C
70 C THE LENGTHS OF THE "NEURON" SYSTEM VECTORS (EXCLUDING
71 C SYSI - SYSN) ARE:
72 C
73 C* STATEV :: KSLEN = vv (TEN SYNAPSES, 6 HISTORICAL VALS)
74 DATA KSLEN / 60/
75 C* RINPUT :: KILEN = vv
76 DATA KILEN / 63/
77 C* OUTPUT :: KOLEN = vv
78 DATA KOLEN / 7/
79 C
80 C THESE VALUES ARE REPORTED TO THE CALLING PROGRAM BY THE
81 C "AUDIT" SECTION IF AUDIT = .TRUE.
82 C
83 DATA LETTER
84 DATA LHIST /6/
85 C
86 C ****.** *******
87 C
88 C STATEMENT FUNCTION SECTION
89 C
90 C
91 C NDS(J) IS THE INDEX OF THE J-TH ENTRY OF THE STATE VECTOR
92 C OF THIS SYSTEM (I.E., RELATIVE TO KSROOT), AND SIMILARLY FOR
93 C NDI(J) AND NDO(J).
94 C
95 NDS(J) = J + KSROOT
96 NDI(J) = J + KIROOT
97 NDO(J) = J + KOROOT
98 C
99 C

100 ST(I) = STATEV(NDS(I))
101 RI(I) = RINPUT(NDI(I))
102 OU(I) = OUTPUT(NDO(I))
103
104
105 C AUDIT SECTION (Calculations needed only on first entry can
106 C ************* also be inserted here.)
107 C
108 1000 CONTINUE
109 IF(.NOT. AUDIT) GO TO 2000
110 C
i1 C INITIALIZE THE SYSTEM VECTOR LABELS
112 NN = I+KSROOT/KSLEN
113 WRITE(LSYSNM, 1090) NN
114 1090 FORMAT('PE #',12)
115 C
116 DO 1010 I=1,9
117 IS = 1 + (I-I)*LHIST
118 II = 1 + (I-1)*(LHIST+I)
119 DO 1009 J=O,LHIST
120
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121 IF(J.LT.LHIST) WRITE(LSNAME(1,IS+J),1091) ILETTER(J),NN
122 1091 FORMAT('WT ',II,AI,' PE ',12)
123 WRITE(LINAME(1,II+J),1092) I,LETTER(J),NN
124 1092 FORMAT('INP ',II,Al,' PE ',12)
125 IF(J.LT LHIST) WRITE(LSNAME(2,IS+J),1093)
126 WRITE(LINAME(2,II+J).1094)
127 1093 FORMAT('D-R SYNAPSE ')
128 1094 FORMAT('FREQUENCY ')
129
130 IF(I.EQ. 1) THEN
131 WR1TE(LONAME(I,I+J),1095) NNJ+I
132 END IF
133 1095 FORMAT('PE '.12,' OUT(',II,')')
134
135 1009 CONTINUE
136 1010 CONTINUE
137 C
138 C
139 CALL SYSAUD(NSUBS, KSROOT,KIROOT, KOROOT, KSLEN,KILEN,KOLEN,
140 1 LSYSNM, LSNAME, LINAME, LONAME)
141 C
142 C INITIALIZE SOME QUANTITIES THAT DON'T CHANGE FROM ONE NEURON
143 C TO THE NEXT:
144
145 THETA = PARMTHR(I,O)
146 C = FIRING THRESHOLD FOR ALL NEURONS
147 DO 1200 1 = 1,5
148 C(I) = PARMTHR(2, I-I)
149 1200 CONTINUE
150 C = LEARNING RATE CONSTANTS
151 WMIN = PARMTHR(3,O)
152 C = LOWER BOUND FOR ABS(SYNAPTIC WEIGHTS)
153 OUMAX = PARMTHR(4,O)
154 C = UPPER LIMIT FOR OUTPUT LEVEL
155 GAIN = PARMTHR(5,O)
156 C = LEARNING RATE GAIN FACTOR
157
158
159 C SKIP THE SUBSYSTEM CROSSTALK SECTION IN AUDIT CYCLE
160 GO TO 3000
161 C
162 C *****************
163 C
164 2000 CONTINUE
165 C SUBSYSTEM CROSSTALK SECTION
166 C
167 C < NONE FOR PRIMITIVE SYSTEM >
168 C
169 C
170 3000 CONTINUE
171 C STATE EVOLUTION SECTION
172 C
173 C
174 C FIRST TIME THROUGH, UNDO SOME OF THE (POSSIBLY RANDOM)
175 C INITIALIZATION OF THE STATE VECTOR WHICH OCCURS AFTER
176 C THE AUDIT SEQUENCE, ERGO, CAN'T BE DONE ABOVE.
177
178 C IF(TIME.LT.TIMINC) THEN
179 C END IF
180
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181 NN = 1 + KSROOT/KSLEN
182 C THIS IS THE NUMBER OF THE CURRENT NEURON.
183 C
184 Y = 0.
185 DO 3100 J = 1,49,LHIST
186 Y = Y + ST(J)*RI(J)
187 3100 CONTINUE
188
189 Y = MIN(OUMAX, MAX(O., Y-THETA))
190 DY= OU(1)-Y
191
192
193 C LEARNING LAW
194 C
195 C
196 C SYNAPTIC LEARNING
197 C FOR EACH SYNAPSE (I)
198 DO 3300 I= 1.9
199 KSY = LHIST*(I-I)+I
200 KIN = (LHIST+1)*(I-1)+1
201
202 C INTEGRATE OVER THE LAG (J) TO OBTAIN DELTA W.
203 DW= 0.
204 DO 3200 J = 1,LHIST-1
205 C (NOTE: Should go to LHIST, but that would require 7 input
206 c lags, i.e., one more than there are synapse lags.)
207 DXIJ= MAX(O., RI(KIN+J)-RI(KIN+J+1) )
208 C (this implements Klopf's refinement on p. 13)
209 DW = DW + C(J)*ABS(ST(KSY+J))*DXIJ
210 3200 CONTINUE
211 DW = DY*DW*GAIN
212
213 C SHIFT ALL WEIGHTS TOWARD THE PAST (RIGHT SHIFT)
214 DO 3250 J = LHIST-1,1,-i
215 STATEV(NDS(KSY+J)) = ST(KSY+J-1)
216 3250 CONTINUE
217
218 C UPDATE THE CURRENT VALUE OF THIS SYNAPSE.
219 WT = ST(KSY) + DW
220 IF(ABS(WT).LT.WMIN) THEN
221 STATEV(NDS(KSY)) = SIGN(WMIN,WT)
222 ELSE
223 STATEV(NDS(KSY)) = WT
224 END IF
225
226 3300 CONTINUE
227
228 C
229 4000 CONTINUE
230 C OUTPUT SECTION
231 C
232 C
233 DO 4100 J=LHIST+1,2,-1
234 4100 OUTPUT(NDO(J)) = OU(J-l)
235 OUTPUT(NDO(1)) = Y
236
237 RETURN
238 C
239 C
240 C ERROR RECOVERY SECTION
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241 C
242 5000 CONTINUE
243 C
244 C* INSERT ERROR RECOVERY CODE AND MESSAGES HERE.
245 C* WRITE TO UNIT 5 (TERMINAL) OR UNIT 6 (LOGGING FILE).

*246 GO TO 3000
247 C
248 END

NUMBER OF WARNINGS IN PROGRAM UNIT: 0
NUMBER OF ERRORS IN PROGRAM UNIT: 0

NUMBER OF WARNINGS IN COMPILATION : 0
NUMBER OF ERRORS IN COMPILATION : 0



RM/FORTRAN Compiler (V2.42) Page 1
Source File: HKDAT.FOR Options: /BLY 02/03/88 16:24:27

1 SUBROUTINE HKDAT(T)
2C
3 C This subroutine provides the initial simulation parameters
4 C not found in the initialization TRACE file and provides for
5 C the computation or the reading of the time-varying sensory
6 C inputs to the neural system.
7C
8 INCLUDE '\SYSPRO\COMNSH.INC'
9 C******

10 C \SYSPRO\COMNSH. INC -- Abbreviated labeled common arrays, for use
11 C in all subroutines except EVOLVE.
12 C NEVER CHANGE ANYTHING IN THIS FILE.
13 C Use an INCLUDE statement to use these common arrays in any
14 C SYSPRO subroutine.
15 C
16 COMMON /STATSP/ STATEV( 1)
17 COMMON /KSNAME/ KSNAME(2, 1)
18 COMMON /INPSP / RINPUT( 1)
19 COMMON /KINAME/ KINAME(2, 1)
20 COMMON /OUTPSP/ OUTPUT( 1)
21 COMMON /KONAME/ KONAME(2, 1)
22 COMMON /OUTINT/ OUTINT(2, 1)
23 COMMON /TIME / TIME
24 CHARACTER*12 KSNAME,KINAME, KONAME, ISYSNM*6
25 COMMON /SIMVAR/ ENDTIM.MODE, DELTAT, TIMINC,NPRINT, AUDIT.RANDOM,
26 1 NSYS,NXTSUB,ISYS(7,110),ISUB(O:220),ISYSNM(110),
27 1 NPLOTS,NSKIP, KURVE(5,51),NPAGE,RSMIN,RSMAX,RSEED
28 LOGICAL AUDIT, RANDOM
29 COMMON / DTG / ISEC,IMIN,IHR,IDAY,IMO,IYR,
30 1 JSEC,JMIN,JHR,JDAY,JMO,JYR,
31 1 KSEC,KMIN,KHR,KDAY,KMO,KYR
32 COMMON /TITLE / ITITLE(40,5),IDATE,ITIME
33 CHARACTER ITITLE*2,IDATE*9,ITIME*8
34 C
35 C****** END OF \SYSPRO\COMNSH. INC
36 INCLUDE '\BPNET\RUMDAT.INC'
37 COMMON /RUMDAT/ GAMMA(4) , PARMTHR(5, 0:4)
38 COMMON /NETWORK/ NUMINPT, INPUT(50), NUMNEUR, NEURN(100),
39 1 NEDGE(2,5100),EDGEWT(5100),NFANIN(4,100)
40 C
41 C
42 IF(T.GT.TIME) GOTO 1000
43 C
44 D PRINT 999, 'SUBROUTINE HKDAT: READING FILE FORT2'
45 D 999 FORMAT(20X,A40)
46 C
47 C READ THE SYSTEM SIGMOID PARAMETERS:
48 READ(2,904)
49 READ(2,903) ((PARMTHR(J,I),I=0,4),J=1,5)
50 D PRINT 903, ((PARMTHR(J,I),I=0,4),J=,5)
51 C
52 C READ THE NETWORK GRAPH STRUCTURE:
53 READ(2,908)
54 MAXINPUTS=50
55 MAXNEURNS=80
56 C READ THE EXTERNAL INPUT DISTRIBUTION...
57 C
58 NUMINPT = 0
59 IEDGE = 0
60 MX = O
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61 500 CONTINUE
62 READ(2,907) MI,M2,M3,R4
63 IF(MI.EQ.0 .AND. M2.EQ.0 .AND. M3.EQ.O) GO TO 600
64 IF(R4. EQ.O.) R4=1.
65 IEDGE =IEDGE + 1
66 IF(MI.EQ.MIX .OR. Ml.EQ.O) THEN
67 NEDGE(1,INPUT(MIX)) = NEDGE(I,INPUT(MlX)) + 1
68 NEDGE(l, IEDGE) = M2
69 NEDGE(2, IEDGE) = M3
70 EDGEWT(IEDGE) = R4
71 ELSE IF(Ml.GT.M1X) THEN
72 NUMINPT = MAX(NUMINPT,MI)
73 INPUT(M1) = IEDGE
74 NEDGE(1.IEDGE) = 1
75 IEDGE = IEDGE + 1
76 NEDGE(l,IEDGE) = M2
77 NEDGE(2, IEDGE) = M3
78 EDGEWT(IEDGE) = R4
79 MIX =M1
80 ELSE
81 PRINT 909
82 STOP
83 END IF
84 GO TO 500
85 C
86 600 CONTINUE
87 C READ THE INTERNAL CONNECTION GRAPH STRUCTURE
88 C
89 READ(2,904)
90 MIX = 0
91 610 READ(2,907) M1,M2,M3,R4
92 IF(M1.EQ.O .AND. M2.EQ.O .AND. M3.EQ.0) GO TO 700
93 IF(R4.EQ. 0.) R4=1.
94 IEDGE = IEDGE + 1
95 IF(MI.EQ.MIX .OR. M1.EQ.O) THEN
96 NEDGE(I,NEURN(MX)) = NEDGE(1,NEURN(MIX)) + 1
97 NEDGE(1,IEDGE) = M2
98 NEDGE(2, IEDGE) = M3
99 EDGEWT(IEDGE) = R4

100 ELSE IF(MI.GT.MIX) THEN
101 NEURN(M1) = IEDGE
102 NEDGE(I,IEDGE) = 1
103 IEDGE = IEDGE + 1
104 NEDGE(1, IEDGE) = M2
105 NEDGE(2,IEDGE) = M3
106 EDGEWT(IEDGE) = R4
107 MIX = M1
108 ELSE
109 PRINT 910
110 STOP
ill END IF
112 GO TO 610
113 C
114 700 CONTINUE
115 C DETERMINE THE NUMBER OF NEURONS IN THE NETWORK
116 NUMNEUR = MIX
117 DO 710 I=I,MlX
118 DO 705 J=NEURN(I)+1, NEURN(I)+NEDGE(I,NEURN(I))
119 705 NUMNEUR = MAX(NUMNEUR,NEDGE(1,J))
120 710 CONTINUE

, =- -- , ,,,, ,m ,,,, m m-,-mmmmm i~mm~mm mm1 mmJ
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121 C
122 D PRINT *. 'NUMBER OF INPUTS = ',NUMINPT
123 D PRINT *, 'NUMBER OF NEURONS= ',NUMNEUR
124 C
125 C CHECK FOR ERRORS IN THE NETWORK ARCHITECTURE
126 IF(NUMINPT.GT.MAXINPUTS) PRINT 911,NUMINPT,MAXINPUTS
127 IF(NUMNEUR.GT.MAXNEURNS) PRINT 912, NUMNEURMAXNEURNS
128 IF(NUMNEUR. GT. MAXNEURNS. OR. NUMINPT. GT. MAXINPUTS) STOP
129 IF(NUMNEUR.LT.MI) THEN
130 PRINT *,' INPUT ERROR. HKDAT COUNTED TOO FEW NEURONS'
131 STOP
132 END IF
133 C
134 READ(2,904)
135 READ(2,902) (GAMMA(I),I=1,4)
136 D PRINT 902, (GAMMAfI),I=1,4)
137 IU = 2
138 800 CONTINUE
139 C SKIP SIX LINES OF INPUT DATA UNIT (NEXT READ WILL BE ON LINE 8)
140 READ(IU,906)
141 805 CONTINUE
142 READ(IU,901,END=1lO0) TT,N,G,M1,Rl,M2.R2,M3,R3,M4,R4
143 IF(TT.LT.O. .AND. IU.EQ.2) THEN
144 IU = M1
145 GO TO 805
146 END IF
147 C
148 RETURN
149 C
150 1000 CONTINUE
151 D PRINT 913, TT
152 IF(T.LT.TT) RETURN
153 IF(N.GT.O) GAMMA(N)=G
154 IF(MI.GT.O) RINPUT(M1)=RI
155 IF(M2.GT.0) RINPUT(M2)=R2
156 IF(M3.GT.O) RINPUT(M3)=R3
157 IF(M4.GT.O) RINPUT(M4)=R4
158 READ(IU,901,END=1100) TT,N,G,M1,RI,M2,R2,M3,R3,M4,R4
159 GO TO 1000
160 C
161 1100 CONTINUE
162 TT = 1.0E+38
163 GOTO 1000
164 C
165 901 FORMAT(F9.3,1X,II,1X,F8.3,1X,4(I3,1X,FIO.3,1X))
166 902 FORMAT(30X,4FI0.8)
167 903 FORMAT(20X,5F10.8)
168 904 FORMAT(////)
169 905 FORMAT(20X,5110)
170 906 FORMAT(//////)
171 907 FORMAT(I7,I8,19,FIO.4)
172 908 FORMAT(////////)
173 909 FORMAT(1X,'SUBROUTINE HKDAT -- ERROR READING FILE FORT2'/
174 1 ' EXTERNAL INPUTS MUST BE LISTED IN ASCENDING ORDER'!
175 2 ' EDIT FORT2 AND RE-RUN THE PROGRAM'//)
176 910 FORMAT(IX,'SUBROUTINE HKDAT -- ERROR READING FILE FORT2'/ 4
177 1 ' OUTPUT NEURONS MUST BE LISTED IN ASCENDING ORDER'/
178 2 ' EDIT FORT2 AND RE-RUN THE PROGRAM'//)
179 911 FORMAT(' SUBROUTINE HKDAT - ERROR: NUMBER OF INPUTS = ',13,/
180 1' MAXIMUM # INPUTS = ',13,//)
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181 912 FORMAT(' SUBROUTINE HKDAT ERROR: NUMBER OF NEURONS - ',13,/
182 1 MAXIMUM # NEURONS '.13,//)
183 913 FORMAT(' HKDAT: READING INPUT DATA FOR TIME = ',F9.3)

184 END

NUMBER OF WARNINGS IN PROGRAM UNIT: 0
NUMBER OF ERRORS IN PROGRAM UNIT: 0

NUMBER OF WARNINGS IN COMPILATION : 0
NUMBER OF ERRORS IN COMPILATION : 0
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT 0*: 1
DATE: 1/11/88

INPUT CONDITIONS: Two random variables with two components
each. No correlations between the variables.

VARIABLES:

SEED: .247E+13 LEXP: 6000
NX: 2 NY: 2 IC: 8
A: 0.0 B: 1.0 IFUN: 0

X ENTROPY: 1.9574733 Y ENTROPY: 1.9515425
DMORPH: 0.0011546 WHOLE ENTROPY: 3.9066575

COMMENTS:

FILE: FORT9; ROUS: 1 TO 1588 • PLOT OF TRIAL vs. UH. ENTROPHY ---
X ENTROPHY ..x
Y ENTROPHY -e

3.92 - D11ORP- ---- ------ -

3.48

3.85

2.61

2.18

1.74

1.31

8.87

8.44

8.80 .... ..

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C. 1
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DM4ORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT ~:2
DATE: 1/13/88

INPUT CONDITIONS: Two random variables with four components
each. No correlations between the variables.

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 0

X ENTROPY: 3.86821 Y ENTROPY: 3.96083
DMORPH: 0.01346 WHOLE ENTROPY: 7. 77527

COMMENTS:

FILE: EXP2.DAT; ROUS: 1 TO 1588 PLOT OF TRIAL vs. UH. ENTROPHY ---

X ENTROPHY
Y ENTROPHY --

7.69- Dr1ORPI---

5.98-

5.12-

4.2?-

2.56-

1.71-

8.85-

8.88

1.8 167.6 334.1 588.7 667.2 833.8 1008.3 1166.9 1333.4 1500.0

TRI AL

Page C. 2
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSOOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT t:3
DATE: 1/13/88

INPUT CONDITIONS: Two random variables with six components
each. No correlations between the variables.

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 6 NY: 6 IC: 8
A: 0.0 B: 1.0 IFUN: 0

X ENTROPY: 5.87292 Y ENTROPY: 5.89273
DMORPHl: 0.30636 WHOLE ENTROPY: 9.89462

COMMENTS:

FILE: EXP3.DAT; ROUS: 1 ToOO6 PLOT OF TRIAL v. UH. ENTROPHY --

X ENT ROPHY
Y ENTROPHY-

10.09-~, DfORP ....- -

8.97-

7.85-

6.73-

4.48-

3.36-

2.24

1.12-

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8

Page C. 3



APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT *:4
DATE: 1/13/88

INPUT CONDITIONS: Two random vectors with eight components
each. No correlations between the variables.

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 8 NY: 8 IC: 8
A: 0.0 B: 1.0 IFUN: 0

X ENTROPY: 7. 82463 Y ENTROPY: 7.82070
Di4ORPH: 0.53758 WHOLE ENTROPY: 11.26581

COMMENTS:

FILE: EXP4.DAT; ROUS: 1 TO 1588 ;PLOT OF TRIAL VS. UH. ENTROPHY--
X ENTROPHY ....x
Y ENTROPHY -- -~

18.M1 DIIORPI+ . .+..

9.34-

5.81-

'4.67-

3.58-

2.34

1.17

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C. 4
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 5
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. Intravariable correlation, x(1) = x(2).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 1

X ENTROPY: 3.8682065 Y ENTROPY: 3.9612269
DMORPH: 0.013411 WHOLE ENTROPY: 7.7752690

COMMENTS:

FILE: EXPS.DAT; ROUS: i TO 158 : PLOT OF TRIAL vs. UH. ENTROPHY -+---

X ENTROPHY ... x
Y ENTROPHY - .

7.69 - DMORP--
6.83 -

5.98

5.12

4.2?-

3.42

2.56

1.71

8.85

1.0 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C. 5



APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT ~:6
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
ea.ch. Two intravariable correletions, x(l) = xC2), Y(1) = y(2).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 2

X ENTROPY: 3.8836992 Y ENTROPY: 3.9413996
DMORPH: 0.0136949 WHOLE ENTROPY: 7.7695165

COMMENTS:

FILE: EXP6.DAT; ROUS: 1 TO 1588 PLOT OF TRIAL VS. UH. ENTROPHY-+-
X ENTROPHY
Y ENTROPHY~--

7.780- DMORPH-

6.85-

5.99-

5.13-

4.28-

2.57

1.71-

8.86

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8

TRIAL

Page C. 6
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 7
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(l) = y(1).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 3

X ENTROPY: 3.9319389 Y ENTROPY: 3.9612269
DMORPH: 0.2537242 WHOLE ENTROPY: 6.8684316

COMMENTS:

FILE: EXP?.DAT; ROUS: I TO 1508 ; PLOT OF TRIAL vs. UH. ENTROPHY -+--

X ENTROPHY ..... x
V ENTROPHY -- e

6.82- + DMORPH---- .-.....-

6.86-

5.31

4.55

3.79 -

3.83

2.27

1.52

8.76

8.88 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
I I I I I I I

1.8 167.6 334.1 588.7 667.2 833.8 188.3 1166.9 1333.4 1588.8

Page C.7
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 8
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components

each. One intervariable correlation, x(1) = -y(1).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 4

X ENTROPY: 3. 9063108 Y ENTROPY: 3.9612264
DMORPH: 0.2536734 WHOLE ENTROPY: 6.8430085

COMMENTS:

FILE: EXP8.DAT; ROUS: I TO 1580 ; PLOT OF TRIAL vs. UH. ENTROPHY -+--

X ENTROPHY ....
Y ENTROPHY - -.

6. 81 _____________ IDMORP-

~6.85

5.29

3.82

1.51

8.88

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C. 8



APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 9
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components

each. One intervariable correlation, x(1) = .5 - (y(1) - .5).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 5

X ENTROPY: 3.9063108 Y ENTROPY: 3.9612269
DMORPH: 0.2536734 WHOLE ENTROPY: 6.8430085

COMMENTS:

FILE: EXP9.DAT; ROUS: I TO 1580 ; PLOT OF TRIAL vs. UH. ENTROPHY -+--
X ENTROPHY ....

V ENTROPHY -

6,81 "-.. . DMORPH

S.29-

4.4

3.78 -

3.02

2.27

1.51

0.76-

8.08

1.0 167.6 334.1 500.7 667.2 833.8 1808.3 1166.9 1333.4 1S80.8
TRIAL

Page C. 9



APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT 0: 10
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation x(1) = 10 * y(1).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 6

X ENTROPY: 3.9319389 Y ENTROPY: 3.9612269
DMORPH: 0.2537242 WHOLE ENTROPY: 6.8684316

COMMENTS:

FILE: EXPIS.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPHY ---

X ENTROPHY .
Y ENTROPHY - -a

6.82- DMORPH- - .

6.86

5.31-

4.55-

3.79 -- . - - • .•

3.83

2.27

1.52

8.76

8.88 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
S I I I I I I

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C. 10
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 11
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(l) = .1 * y(1).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 7

X ENTROPY: 3.9319389 Y ENTROPY: 3.98612269
DMORPH: 0.2537242 WHOLE ENTROPY: 6.8684316

COMMENTS:

FILE: EXPI1.DAT; ROUS: 1 TO 1S88 ; PLOT OF TRIAL Vs. UH. ENTROPHY -+--

X ENTROPH ..
V ENTROPHY -

6.82 - DMORP----
6.86 /

5.31-

4.SS(

3.79 .,•

3.83

2.27

1.S2

8.76

8.88 r
I ! 1 I i I I

1.8 167,6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C. 11



APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT *:12
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(l) = y(1) + Y(2).

VARIABLES:

SEED: .247E+13 LEXP. 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 8

X ENTROPY: 3.8949640 Y ENTROPY: 3.9612269
DMORPB: 0.1347252 WHOLE ENTROPY: 7.3120666

COMMENTS:

FILE: EXPi2.DAT; ROUS: I TO 1508 PLOT OF TRIAL VS. UH. ENTROPHY ---

X ENTROPHV Y
Y ENTROPHY --

7.25- DIIORPH

6.44-

5.64-

4.83 (
4.03-I_

3.22

2.42-

1.61-

0.81

1.0 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRI AL

Page C. 12



APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #:13
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. One intercorrelation, x(1) = Y(1) * y(2).

VARIABLES:

SEED: .247E+13 LEX?: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 9

X ENTROPY: 3.9062233 Y ENTROPY: 3.9612269
DMDRPH: 0.122994 W~HOLE ENTROPY: 7.3707037

COMMENTS:

FILE: EXPI3.DAT; ROUS: I TO 15880 PLOT OF TRIAL VS. UH. ENTROPHY --

X ENTROPHY
Y ENTROPHY --

7.38 DOP ...

6.,49

5.68

4.87.

3.25

2.43-

1.62-

8.81-

1,0 16?.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C. 13
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 14
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x(1) = y(1) + y(2), y(3) =
x(3) + x(4).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 10

X ENTROPY: 3.9319389 Y ENTROPY: 3.9216778
DMORPH: 0.3654028 WHOLE ENTROPY: 6.3671360

COMMENTS:

FILE: EXP14.DAT; ROUS: 1 TO 1S88 ; PLOT OF TRIAL Vs. UH. ENTROPHY -+--
X ENTROPHY .... x
Y ENTROPHY --

6.33- DMORPH, - ........

S.63-

4.93-

4.22-0

3.52-f

2.82

2.11-

1.41-

0.70

1.8 167.6 3341 ,88.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C. 14



APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 15
DATE: 1/15/88

INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x(1) = y(1) * y(2), y(3)
x(3) * x(4).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 11

X ENTROPY: 3.9062233 Y ENTROPY: 3.9316173
DMORPB: .2310253 WHOLE ENTROPY: 6.8979411

COMMENTS:

FILE: EXP15.DAT; ROUS: I TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPHY -+--

X ENTROPHY
V ENTROPHY -

6.84 ___________________-.-- - DMORPH-
6.88

4.56-

3.04-

2.28

1.52

8.76

I I I I I I I

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL

Page C.15



APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT t : 16
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x(l) = y(l), x(2) = y(2).
VARIABLES:

SEED: .247E+13 LEX?: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 12

X ENTROPY: 3.9312069 Y ENTROPY: 3.9612269
DMORPH: 0.4973724 WHOLE ENTROPY: 5.8836598

COMMENTS:

FILE: EXPI6.DAT: ROUS: 1 TO 1S88 : PLOT OF TRIAL vS. UH. ENTROPY -+--

K ENTROPY .... x.
Y ENTROPY - -

.85- _DMORPH .

3.90 - , . - - :,- -

3.25

2.68

1.95

1.38

8.65 .

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT 0i: 17
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. Three intervariable correlation, x(1) = y(1), x(2) = y(2),
x(3) = y(3).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 13

X ENTROPY: 3.8895742 Y ENTROPY: 3.9812269
DMORPH : 0.7411187 WHOLE ENTROPY: 4.8575912

COMMENTS:

FILE: EXPI7.DAT; ROUS: I TO 1588 ; PLOT OF. TRIAL vs. UH. ENTROPY -s-
X ENTROPY
Y ENTROPY - -e

4.86 - DT 1ORP -'-- ......

4.32

3.24

2.78

2.16

1.62

1.88

0.54

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1S88.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSCOMP
EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 18
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. Four intervariable correlations, x(l) = y(l), x(2) = y(2)
x(3) = y(3), x(4) = y(4).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 14

X ENTROPY: 3.9812289 Y ENTROPY: 3.9612269
DMORPH: 0.9807996 WHOLE ENTROPY: 3.9612269

COMMENTS:

FILE: EXP18.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL vs. UN. ENTROPY

X ENTROPY x
V ENTROPY -

3.95 e DMORPH-

3.52-

3.88

2.64

2.28-

1.76

1.32

8.88-

I I I I iI I I

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 19
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = .1 * y(1) + .9 *
y(2).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 15

X ENTROPY: 3.8948736 Y ENTROPY: 3.9612269
DNORPH: 0.2156875 WHOLE ENTROPY: 6.9849877

COMMENTS:

FILE: EXP19.DAT: ROUS: I TO IS6 ; PLOT OF TRIAL vs. UH. ENTROPY +

X ENTROPY
Y ENTROPY -

6.92 - 4 -------- . DMORPH"---" .......

6.16-

5.39-

4.62

3.85

3.8

2.31
1.54

8.77

1.8 167.6 334.1 588.7 66?.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
Dk4ORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP
*EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT t:20
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(l) = .2 *y(l) + .8

y(2).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 16

X ENTROPY: 3.8984380 Y ENTROPY: 3,9612269
DMORPH: 0.1874058 WHOLE ENTROPY: 7.1027756

COMMENTS:

* FILE: EXP2@.DAT; ROUS: i TO 15880 PLOT OF TRIAL VS. UH. ENTROPY -s--

X ENTROPY ..
Y ENTROPY --

7.85 ID!ORP11t

S. 48

4.78-

3.92-

3.13-

2.35-

1.57-

0.78-

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8

TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT 1: 21
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = .3 * y(1) + .7 *
y(2).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 17

X ENTROPY: 3.6973515 Y ENTROPY: 3. 9612269
DMORPB: 0.1651944 WHOLE ENTROPY: 7. 1913958

COMMENTS: 4

FILE, EXP21.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL Vs. UH. ENTROPY -+--

X ENTROPY .... x.
Y ENTROPY - -

7.13- DMORPH

6.34-
5.55

4,75

3.96- . , -

3.17

2.38-

1.58

8.79

" ' I I I I I I I I

1.8 167.6 334.1 588.7 667.2 833.8 1088.3 1166.9 1333.4 1588.8
TRIAL

Page C. 21
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APPENDIX C
DHORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT ~:22
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, xc(l) =.4 *y(1) + .6
y(2).
VARIABLES:

SEED: .247E+13 LEXP. 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 18

X ENTROPY: 3.8918359 Y ENTROPY: 3.9612269
DI4ORPH: 0.1431048 WHOLE ENTROPY: 7.2750959

COMMENTS:

FILE: EXP22.DAT; ROWlS: 1 TO 1588 PLOT OF TRIAL VS. UH. ENTROPY --

X ENTROPY
Y ENTROPY --

7.21- DtIORPH*

6.41-

5.61

4.81-

4.01-

3.28-

2.48-

1.68-

8.88

1.0 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL
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11 iAPPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 23
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = .5 * y(1) + .5 *
y(2).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 19

X ENTROPY: 3.8949640 Y ENTROPY: 3.9612269
DMORPB: 0.1347252 WHOLE ENTROPY: 7.3120666

COMMENTS:

FILE: EXP23.DAT; ROUS: I TO 1500 ; PLOT OF TRIAL vs. UH. ENTROPY -i---
X ENTROPY .... x.
Y ENTROPY -

7 .2 ---- -- D O R P -t . ....

6.44-

5.64 -

4.83 (
4.83 -_ __ _ __- - ,,-

3.22

2.42

1.61

8.81

8.80. 1 I '| " ' I ' I I i

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOHP

RESEARCHER: David G. Boney

EXPERIMENT #:24
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(l) = Y(1) + Y(2) + y(3).

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 20

X ENTROPY: 3.9074244 Y ENTROPY: 3.9612269
DMORPB: 0.1411841 WHOLE ENTROPY: 7.2984409

COMMENTS:

FILE: EXP24.DAT; ROWS: I TO 1I8O@ PLOT OF TRIAL V'S. UH. ENTROPY -+-

X ENTROPY x
Y ENTROPY --

7.25-

5.64-

4.83-

4.83-_ _ _

3.22-

2.42-

1.61

8.81-

1.8 167.6 334.1 588.7 667.2 833.8 1008.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT 0 : 25
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = (y(1) + y(2) + y(3)
)/ 3.
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 21

X ENTROPY: 3.9074244 Y ENTROPY: 3.9612269
DMORPH: 0.1411841 WHOLE ENTROPY: 7.2984409

COMMENTS:

FILE: exp25.dat; ROUS: I TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPY ---

X ENTROPY ... X.
V ENTROPY -

7.25 DMORPH

6.45-

5.64

4.83

4.03- : - -

3.22

2.42

1.61

8.81
8.88 - - - ' • ,

I I I I I I I I

1.8 167.6 334.1 588.7 667.2 833.8 1886.3 1166.9 1333.4 1588.8
TRIAL

Page C.25
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT 1*: 26
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = y(1) + y(2) + Y(3) +
y(4) .
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 22

X ENTROPY: 3.8960431 Y ENTROPY: 3. 9612269
DMORPH: 0.1365768 WHOLE ENTROPY: 7.3056674

COMMENTS:

FILE: EXP26.DAT; ROUS: I TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPY --+--

X ENTROPY ..
Y ENTROPY -

7 .2 6 - - DM O RP H - - -- ........O

6.45-

5.65

4.84

4.83 E3

3. 23

2.42

1.61

8.81

I I I I I

1.8 167.6 334.1 588.7 667.2 833.8 1888,3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 27
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. One intervariable correlation, x(1) = (y(1) + y(2) + y(3) +
y(4)) / 4.
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 23

X ENTROPY: 3.8960431 Y ENTROPY: 3.9612269
DMORPH: 0.1365768 WHOLE ENTROPY: 7.3056674

COMMENTS:

FILE: EXP2?.DAT; ROUS: 1 TO 1588 PLOT OF TRIAL vs. UH. ENTROPY -+--

X ENTROPY .....
Y ENTROPY -

7.26" + DrIORPh- -

6.45- /

4.64

4.83-

3.23

2.42

1.61

8.81

D ~~~~8.88 :
I I I I I I I I

1.8 167.6 334.1 588.7 667.2 833.8 1880.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX CDMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 29
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x(1) = y(1) + y(2), x(2) =
y(2) + y(3).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 25

X ENTROPY: 3.8991964 Y ENTROPY: 3.9612269
DMORPH: 0.2496906 WHOLE ENTROPY: 6.8519797

COMMENTS:

FILE: EXP29.DAT; ROUS: I TO 1588 ; PLOT OF TRIAL vs. UH. ENTROPY -+---
X ENTROPY .
Y ENTROPY - -

6.88 I I : DMORPI---- ..

6.85

5.29 -

4.54 /
3.78 .- o.f1 0

3.82

2.27

1.51

8.76

0.00
I I I I 1 I I I

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 30
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. Three intervariable correlations, x(1) = y(1) + y(2), x(2)
= y(2) + y(3), x(3) = y(3) + y(4).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 26

X ENTROPY: 3.8101032 Y ENTROPY: 3.9612269
DMORPH: 0.3473946 WHOLE ENTROPY: 6.3682823

COMMENTS:

FILE: EXP38.DAT; ROUS: 1 TO 1508 ; PLOT OF TRIAL vs. UH. ENTROPY
H ENTROPY
Y ENTROPY - -e

6.34 , , ,--- ' DMORPH--- ..

5.64 -

4.93-

4.23 ,. -=e2-..._ :, 0 ,,< o , -0- -

3.52 ,

2.82

2.11

1.41

8.78

8.88 _______ _________________________
! * T**. I i i ' i i

1.8 167.6 334.1 588.7 667.2 833.8 1880.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 31
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. Four intervariable correlations, x(1) = y(1) + y(2), x(2) =
y(2) + y(3), x(3) = y(3) + y(4), x(4) = y(4) + y(l).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 27

X ENTROPY: 3.8055966 Y ENTROPY: 3.9612269
DMORPH: 0.4399206 WHOLE ENTROPY: 5. 9900842

COMMENTS:

FILE: EXP31.DAT; ROUS: I TO 1580 ; PLOT OF TRIAL vs. UH. ENTROPY -+--

X ENTROPY ....

Y ENTROPY -

S.95- I DMORPHi ...

5.29 (
4.63-

3.31 '

2.64

1.98

1.32 -

0.66 -.-

I. }I I I I I

1.0 167.6 334.1 58.7 667.2 833.8 100.3 1166.9 1333.4 1508.0
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSOOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT #: 33
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each. Two intervariable correlations, x(1) = Y(1) + Y(2) + y(3),
x(2) = y(2) + y(3) + y(4).
VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 29

X ENTROPY: 3.9173765 Y ENTROPY: 3.9612269
DHORPB: 0.2494148 WHOLE ENTROPY: 6.8712735

COMMENTS:

FILE: EXP33.DAT; ROUS: I TO 1688 PLOT OF TRIAL VS. UH. ENTROPY -i-
X ENTROPY ...X
Y ENTROPY --

6.84_______________________DfORPH

3.88-

3.84-

2.28-

1.52

1.8 167.6 334.1 588.7 667.2 833.8 1988.3 1166.9 1333.4 1588.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT 1: 34
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components
each.

VARIABLES:

SEED: .247E+13 LEXP: 3000
NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFUN: 30

X ENTROPY: 3.9007394 Y ENTROPY: 3.9612269
DMORPH: 0.3511075 WHOLE ENTROPY: 6.4439230

COMMENTS:

FILE: EXP34.DAT; NOUS: I 10 1588 ; PLOT OF TRIAL vs. UH. ENTROPY -s--
X ENTROPY
Y ENTROPY -

6.42 - DORPH

S.71-

4.99-

4.28

3.57

2.85

2.14

1.43

8.71

8.88 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
II I I I I I I i

1.8 167.6 334.1 508.7 667.2 833.8 1000.3 1166.9 1333.4 1500.0
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCO4P
EXPERIMENT: DMORPH Characterization

RESEARCHER: David G. Boney

EXPERIMENT t:35
DATE: 1/18/88

INPUT CONDITIONS: Two random variables with four components

each. Four intervariable correlations x(1) = Y(1) + y(2) + y(3),
x(2) = y(2) + y(3) + y(4), x(3) = y(3) + y(4) + y(1), x(4) = y(4)
+ y(l) + y(2).
VARIABLES:

SEED: .247E+13 LEXP: 3000

NX: 4 NY: 4 IC: 8
A: 0.0 B: 1.0 IFJN: 31

X ENTROPY: 3.7893291 Y ENTROPY: 3.9612269

Dt4ORPH: 0.4477465 WHOLE ENTROPY: 5.9422097

COMMENTS:

FILE: EXP35.DAT; ROUS: 1 TO 1588 ; PLOT OF TRIAL VS. UH. ENTROPY -s-
X ENTROPY x
Y ENTROPY - -a

5.95I ~DIIORPH- +

5.29-

4.63-

3.38

2.64-

1.98-

1.32-

1.8 167.6 334.1 588.7 667.2 833.8 1888.3 1166.9 1333.4 158.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - BACK PROPAGATION

RESEARCHER: David G. Boney

EXPERIMENT #: 1
DATE: 2/1/88

INPUT CONDITIONS: The x variable is a vector with four
components. This vector is the input to a 4-3-4 back propagation
network that is suppose to pass through its inputs. The four
components are the following sin functions: x(l) = .5 + .5 *
sin~t) , x(2) = .5 + .5 * sin(t - 1), x(3) = .5 + .25 * sin(t),
x(4) = .5 + .25 * sin(t-1). t is the simulation time. The y
variable is a vector of four components that is the output of the
network. The run was done with learning off and the output was
sampled at the boundry of a second.
VARIABLES:

LEXP: 1500
NX: 4 NY: 4 IC: 90

X ENTROPY: 3.1543148 Y ENTROPY: 3.5262272
DMORPH: 0.3564391 WHOLE ENTROPY: 5.0859146

COMMENTS:

Page C.34
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSCOMP

EXPERIMENT: DMORPH - BACK PROPAGATION

RESEARCHER: David G. Boney

EXPERIMENT #: 2
DATE: 2/1/88

INPUT CONDITIONS: The x variable is a vector with four
components. This vector is the input to a 4-3-4 back propagation
network that is suppose to pass through its inputs. The four
components are the following sin functions: x(1) = .5 + .5 *
sin(t) , x(2) = .5 + .5 * sin(t - 1), x(3) = .5 + .25 * sin(t),
x(4) = .5 + .25 * sin(t-1). t is the simulation time. The y
variable is a vector of four components that is the output of the
network. The run was done with learning off after having learned
for 1500 seconds. Sampling was done at the second boundries.
VARIABLES:

LEXP: 1500
NX: 4 NY: 4 IC: 90

X ENTROPY: 3.1543148 Y ENTROPY: 3.1566122
DMORPH: .3363257 WHOLE ENTROPY: 4.6819711

COMMENTS:
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - BACK PROPAGATION

RESEARCHER: David G. Boney

EXPERIMENT #: 3
DATE: 2/1/88

INPUT CONDITIONS: The x variable is a vector with four
components. This vector is the input to a 4-3-4 back propagation
network that is suppose to pass through its inputs. The four
components are the following sin functions: x(1) = .5 + .5 *
sin(t) , x(2) = .5 + .5 * sin(t - 1), x(3) = .5 + .25 * sin(t),
x(4) = .5 + .25 * sin(t-1). t is the simulation time. The y
variable is a vector of four components that is the output of the
network. This run was done with learning off and sampled once a
second at the half second boundry.
VARIABLES:

LEXP: 1500
NX: 4 NY: 4 IC: 90

X ENTROPY: 3.1540511 Y ENTROPY: 3.3335972
DMORPH: 0.4456712 WHOLE ENTROPY: 4.4079671

COMMENTS:

Page C.36
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSCOtMP

EXPERIMENT: DMORPH - BACK PROPAGATION

RESEARCHER: David G. Boney

EXPERIMENT #: 4
DATE: 2/1/88

INPUT CONDITIONS: The x variable is a vector with four
components. This vector is the input to a 4-3-4 back propagation
network that is suppose to pass through its inputs. The four
components are the following sin functions: x(1) = .5 + .5 *
sin(t) , x(2) = .5 4 .5 * sin(t - 1), x(3) = .5 + .25 * sin(t),
x(4) = .5 + .25 * sin(t-1). t is the simulation time. The y
variable is a vector of four components that is the output of the
network. This run was done with learning off after having run for
1500 seconds with learning on. the sampling was done once a
second on the half second intervals.
VARIABLES:

LEXP: 1500
NX: 4 NY: 4 IC: 90

X ENTROPY: 3. 1540511 Y ENTROPY: 3. 1570110
DMORPH: 0.5151951 WHOLE ENTROPY: 3.8159778

COMMENTS:
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - KLOPF

RESEARCHER: David G. Boney

EXPERIMENT *$: 1
DATE: 1/29/88

INPUT CONDITIONS: The x variable is a vector with four
components. This vector is the input to a 4-2-4 Klopf network.
The four components are the following sin functions: x(1) = .5 +
.5 * sin(t) x(2) = .5 + .5 * sin(t - 1), x(3) = .5 + .25 *
sin(t), x(4) - .5 + .25 * sin(t-1). t is the simulation time. The
y variable is a vector of four components that is the output of
the network. The inputs and outputs where in three second
intervals. This run was done with learning off
VARIABLES:

LEXP: 1475
NX: 4 NY: 4 IC: 90

X ENTROPY: 3.1604311 Y ENTROPY: 3.6817343

DMORPH: 0.4795595 WHOLE ENTROPY: 4.7713003

COMMENTS:

FILE: HX4BASE.JU9; ROUS: I TO 1475 PLOT OF TRIAL vs. UH. ENTROPY -i-
X ENTROPY ....
Y ENTROPY - -

4.79 . DHORPth---+ .

4.26 /
3.72 - - p .. . .6 .... -.e---- ,

3.19- I",
2.66 .

2.13

1. 68

1.86 -

0.00 1

I I I I I I I I I

1.8 164.8 328.6 492.3 656.1 819.9 983.7 1147.4 1311.2 1475.8
TRIAL
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DMORPH EXPERIMENTS AND GRAPHS

PROJECT: BIOMASSCOMP

EXPERIMENT: DMORPH - KLOPF

RESEARCHER: David G. Boney

EXPERIMENT #*: 2
DATE: 1/29/88

INPUT CONDITIONS: The x variable is a vector with four
components. This vector is the input to a 4-2-4 Klopf network.
The four components are the following sin functions: x(1) = .5 +
.5 * sin(t) , x(2) = .5 + .5 * sin(t - 1), x(3) = .5 + .25 *
sin(t), x(4) .5 + .25 * sin(t-1). t is the simulation time. The
y variable is a vector of four components that is the output of
the network. The inputs and outputs where in three second
intervals. This run was done with learning off after having run
for 1500 seconds with learning on.
VARIABLES:

LEXP: 1475
NX: 4 NY: 4 IC: 90

X ENTROPY: 3.1604311 Y ENTROPY: 3. 1796041
DMORPH: .4120096 WHOLE ENTROPY: 4.3539858

COMMENTS:

FILE: HK4AFTR.JU9; ROUS: i TO 147S ; PLOT OF TRIAL vs. U14. ENTROPY -+---
X ENTROPY
Y ENTROPY -

4.44 - DMORPH--.-+ +

3.94

3.4S-

2.96-

2.47-

1.97

1.48

8.99 -

0.49

-- 1I I I I I

1.8 164.8 328.6 492.3 656.1 819.9 983.7 1147.4 1311.2 1475.8
TRIAL
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APPENDIX C
DMORPH EXPERIMENTS AND GRAPHS

PROJECT: B IOMASSCOMP

EXPERIMENT: DMORPH - KLOPF

RESEARCHER: David G. Boney

EXPERIMENT #: 3
DATE: 1/29/88

INPUT CONDITIONS: The x variable is a vector with fourcomponents. This vector is the input to a 4-2-4 Klopf network.
The four components are the following sin functions: x(l) = .5 +.5 * sin(t) , x(2) = .5 + .5 * sin(t - 1), x(3) = .5 + .25 *
sin(t), x(4) .5 + .25 * sin(t-1). t is the simulation time. They variable is a vector of four components that is the output ofthe network. The inputs and outputs where in three second
intervals. This run was done after changing two of the neuroncoefficients, running the network for 1500 seconds with learningon, and then running for 1500 seconds with learning off. The
sampling was done with learing off.
VARIABLES:

LEXP: 1475
NX: 4 NY: 4 IC: 90

X ENTROPY: 3. 1604311 Y ENTROPY: 3. 1176403DMORPH: .4120096 WHOLE ENTROPY: 4.3872814

FILE: HX4AFTR2.JU9; ROUS: I TO 1475 ; PLOT OF TRIAL vs.UH. ENTROPY ----
X ENTROPY .X
Y ENTROPY -

4.43 ,.,+'------- DMORPH--+.

3.93 /
3.44-

2.95S-~-

2.46-

1.97

1.48-

0.98 -

0.49

8.88 I I I I I

1.0 164.8 328.6 492.3 656.1 819,9 983.7 1147.4 1311,2 1475.8
TRIAL
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ABSTRACT

Realtime signal processing of multielectrode probes of living
neural networks is limited both by the speed and flexibility of
the host computing equipment and by the efficiency and flexibility

of the signal processing algorithm. In this report, we describe
the structural and functional design of a multichannel signal
processing algorithm which has the ability to dynamically include
or exclude processing steps and subroutines in order to maximize
the utilization of available hardware. That is, the algorithm

will perform all the processes that it can perform on realtime

data in a racetrack buffer without either overtaking the incoming
data or falling behind and being lapped thereby. Remaining
processes are performed on intermediate stored data in an off-line
(non-realtime) mode.
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1. INTRODUCTION

1.1 Review of the Problem

The primary problem (ddressed by this research is the fact
that it is now possible for most neurophysiology laboratories to
collect more parallel channels of data from living neuron networks
than they can afford to either save or to process in real time.
For example, Dr. Gross's MMEP apparatus is now collecting 34
parallel channels of data at 20K samples per second each. Simply
transferring that data at 2 bytes per sample to tape or disk for
subsequent non-realtime processing would fill up a 50MB volume in
a little over half a minute.

Even though a half minute's worth of data is enough to
provide useful information on the network structure, the MMEP
apparatus has the potential to not only listen to the culture
network, but to talk back to it as will. Without realtime
analysis of the current patterns in the network, this valuable
potential cannot be exploited. That is, while it would be
possible to "shout" at the network at random intervals and then
analyze the reactions offline later, the truly earthshaking
experiments that could be performed require the detection of
developing patterns of signals in the network (in real time) and
the selective feedback of signals to interrupt or respond to those
patterns.

With the capability for realtime interaction, it would be
possible for the first time to test certain mathematical models of
neural network behavior, such as the synaptic plasticity models
which are used to formulate explicit mechanisms for the Hebbian
learning laws (cf., Grossberg, or Hestenes [21). Tn particular,
Grossberg's "outstar learning theorem" could be tested by
repeatedly injecting a pattern of signals to coincide with the
occurrence of a pattern in a naturally occurring sequence. Later,
if the artificial stimulus evokes the same response as the natural
pattern, but in the absence of the natural pattern, and in the
absence of any prior ability to evoke that response, then the
required synaptic plasticity will have been demonstrated. This
could have enormous consequences for science, with implications
not only for neurophysiology, but for psychology and computer
science as well.

To do the necessary realtime processing on which these
experiments are predicated -- indeed, to even analyze the
culture's network behavior offline in nonrealtime -- requires the
development of mathematical tools, computational algorithms, and
hilrdware c-onfigurations that may not now exist. Since the
hardware selection is limited more by economic considerations than
by technological capabilities, we are driven to try to coax the
resulting algorithms to be "hardware friendly". That is. we want
the alqorithm to be able to adapt to the host without excessive
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reprogrammino. The meaning of this statement will become more

clear in section 1.3 (Objectives); however, we shall now review
the existing techniques for analysis of multichannel neural
network data.

1.2 Selection of Methods

The tasks which must be performed by the computer in order to
analyze the network data can be summarized in the following

sequence:

(1) Detect spikes in the signals which 1

are sensed in each electrode.

V

(2) 1 Classify the detected spikes
1 according to their source neurons.

V

(3) Compress the data streams from

each source neuron into a minimal I
stream still containing enough

1 information to un-compress and

recover the original data.

V

(4) Process the compressed data from
all source neurons to identify the

communication structure of the
total network

The steps in this sequence become more difficult as one proceeds,
until at step (4) one finds almost nothing beyond some rather
straightforward histograms being attempted in the current litera-

ture. Since the histograms are informative, we shall provide for
their computation, but we shall also attempt a more network-

theoretic description of the system.

3I
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1.2.1 Spike Detection

Spike detection is clearly the easiest step to perform. One
merely" sets a threshold at a level which excludes the noise, and
whenever the (absolute value of the) digitized voltage level
exceeds the threshold, one declares that a spike has been
detected. We put "merely" in quotes because the selection of the
threshold level in a multichannel process will be done by the
computer according to some algorithm, and this algorithm is
considerably less transparent than the thresholding instruction.

Establishing the threshold -- an easy task for a person
looking at an oscilloscope trace -- is essentially a problem in
"constant false-alarm rate" (CFAR) methods. Digital CFAR thresh-
olding is discussed by Rohling in [5]. In the absence of spiking
signals, i.e., when only noise is being sensed, the threshold can
be determined by computing a histogram of the digitized voltages
and finding a level within which enough of the samples lie, so
that only once in a specified number of seconds does a noise
sample lie outside the threshold.

Unfortunately we usually have to take the noise as it comes:
with some signal added to it. Therefore in order to set the CFAR
threshold we have to mask out the spikes so that they are excluded
from the histogram. Of course, we can't use thresholding to find
the spikes, because it is the threshold we are trying to find! So
we have to use some other a-priori knowledge to find and mask the
spikes. If the computational application of this knowledge were
quicker than thresholding, then we would naturally use it for the
realtime spike detection; but it isn't, so we apply it prior to
realtime processing in a so-called "learning" mode.

There are a number of different masking techniques, depending
on the application, but one that comes to mind exploits the
continuity (smoothness) of the spike trace as opposed to the
roughness of the noise. Thus the algorithm will examine a number
of consecutive samples to see if their magnitudes are all
unusually 1arge (compared to an unmasked histogram) and all on the
same side of the origin. If so. an appropriate amount of data
around the suspected spike is masked off, i.e., removed from the
histogram. This process continues to be performed on the learning
data set until no further spikes can be identified, whereupon the
remaining histogram represents an approximation of the probability
density function of the noise alone. The threshold can then be
selected at that value for which the number, n, of samples whose
magnitudes exceed the threshold, divided by the length, T, of the
learning sample in seconds is most nearly equal to the desired
false alarm rate.

One could detect spikes by algorithms that are more
complicated than simple thresholding, such as by matched
filtering, maximum likelihood estimation, and many others (each
requiring its own "learning mode" and each also requiring its own
thresholding operation), but these methods can be reserved for

4
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some post-detection processing in the remaining steps of the

sequence.

1.2.2 Spike Classification

The next task is to determine whether the signal on a given
electrode is the superposition of spike trains from more than one
neuron source, and if so, to separate the signal into its
constituent parts. A survey of computer methods for this
separation task was given by Schmidt [6] in 1984. Other
techniques can also be found (cf , Okada and Maruyama C4] ). Our

approach in this section is to select a sequence of methods based
on a progression from the computationally simple to the more

difficult. We choose this approach because the structural design
of our algorithm (Chapter 2) calls for the use of simple methods
on channels where simple methods suffice, and harder methods where
they are required, thus using available processing time most
efficiently. (Hardware configurations employing a dedicated
signal processor in each channel will not need to avail themselves

of this choice.)

As with the detection process, spike classification is done
in two parts. During a learning mode each channel is evaluated to
determine the values of some variables which will be used in the

real time mode and which are expected to change very slowly, if at
all. For spike separation, these variables will partition the
channels into subsets, each of which can be de-interleaved by a
different class of algorithm.

The first of these variables will identify the number of
sources being received on the channel. If only one source is
being received, then step (2) of the sequence is trivial. The
second variable will be a vector whose components identify the
amplitudes at which distinct sources are found and the number of
distinct sources that are found at each amplitude. If no
amplitude bin has more than one source contributing to it, then
the classification can be performed by amplitude discrimination.
But if any bin has more than one source then some form of waveform
discrimination will have to be used to separate the sources.

The easiest way to determine that there are more than one

source neuron represented in the signal is to perform a one-
dimensional cluster analysis on the peak voltage in each detected

spike. (A general description of cluster analysis algorithms is
given in Appendix A.) If more than one cluster is found, then
there are more than one source. The fact that the converse of
that statement is false necessitates the use of more complicated
algorithms for the classification process, but since these more

complicated mthods work best when the peaks are presented in
constant-amplitude clusters, we may as well do the easiest job

first.

5-I



MARTINGALE RESEARCH CORPORATION
NTSU TECHNICAL REPORT 8/01/86

To do the amplitude (peak) cluster analysis, one must first
detect and measure the height of the greatest local extremum
within a single pulse-width of the threshold crossing (detected
in step 1). this can generally be done without any multiplies or
divides. (See Appendix B, or reference [43). Using a cluster
diameter that is large enough to allow for known amplitude
variations from single sources, one then sorts the peak values
into a histogram (see Tou & Gonzalez E61 ) te find the clusters.

To determine whether the peaks assigned to a given cluster
break down further into different wave shapes one can then do an
n-dimensional vector cluster analysis, where n is the number of
samples after a threshold crossing needed to cover all spike
waveforms. The n-dimensional clusters are found analogously to
the way the amplitude clusters are found, but the distance measure
is a little more involved and the cluster diameter is more
difficult to establish (See Appendix A).

Once the waveform clusters are identified, it might be
possible to do the realtime assignment of spikes to the
appropriate cluster with an algorithm that im simpler than a
tcmplate comparison or a matched filter. But even with a
"hardware friendly" algorithm, it is fair to assume that there is
a vector or array processor lurking in a wait-state nearby,
eagerly contemplating its next victim. Therefore, we shall prefer
to simply vectorize the distance between the realtime peak and the
centers of the clusters to assign it to its source.

1.2.3 DATA COMPRESSION

The first step in data compression is almost taken care of
in tasks (1) and (2) simply by detecting and classifying the
spikes in each channel. By delivering a report of the TIME when
the spike was detected over the threshold the SOURCE which emitted
it, and (perhaps) the measured spike amplitude, one has compressed
the 20 or so sample values representing the spike, and the 80 or
so preceding sample values representing noise alone into only one
or two values from which a replica of the spike (sans noise) can
be reproduced.

One essential item in the description of the SOURCE (though
it may actually be irrelevant as far as the neuronal "message" is
concerned) is the wave shape of the spike, which was discovered in
the classification step. Since this shape is expected to change
only very slowly, if at all, during the experiment, it can be
identified (via pointers or links to a template library) with the
array into which the TIME values are reported. Thus. if one wants
to resurrect a replica of the raw data which was recorded from a
particLIlar source neuron, one can retrieve the sequence of times-
of-arrival of spikes from the array associated with that source,
and at those times construct. a pulse with the shape in the
template library that is linked to the source. If amplitudes are
considered important, the (normalized) templates can be scaled by

6
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the amplitude that was stored alongside the time of arrival.

Data compression is possible whenever there are replicated
patterns in the data that can be parametrized and reduced to a
symbol, followed by a list of values of the parameters. Thus, in
the previous paragraph, raw voltage samples from an electrode
which is sensing two sources is compressed into the following
symbols and parameter lists:

SOURCE1((T11,A11),(T12,A12), .. )

SOURCE2((T21,A21),(T22,A22), ... ),

where Tij is the time of arrival of the j-th pulse from the i-th
source, and Aij is its amplitude. The name, SOURCE1, is taken to
be equivalent to the unchanging characteristics of the source.
Similarly, mathematicians use symbols like "SIN", and "LOG" to
compress the descriptions of families of functions, and by
supplying parameters like the frequency of the sinusoid, and the
base of the logarithm, they can then resurrect a graphical
representation of the function.

"Bursting" is an observable feature of signals drawn from
certain kinds of neurons. Even though the literature shows little
agreement on a definition of what might constitute a burst, we can
sidestep that issue for the purpose of data compression. For Our
purposes, it is sufficient to establish a library of certain
patterns occurring in the compressed spike reports, and when those
patterns are detected, reduce them to a more compact
representation. We suggest the following definition:

A "burst" is either (1) three or more consecutive spikes, whose
amplitude sequence lies within a martingale envelope rooted on the
first spike, and whose interval sequence lies within a martingale
envelope rooted on the first interval; or (2) any single spike
which fails to fit in a sequence of the previous category. The
envelope to be used on the amplitude sequence should be of the
form,

a + (b-a)exp(-kt) +/- vt

where the values of a. b and k can be determined from the
first three amplitudes in the candidate sequence (since vt is
nearly zero at the start), and v is the variance of the
amplitude process. Similarly, the envelope to be used on the
interval sequence should be of the form,

b - mt +/- v't

where b' and m can be determined from the first two intervals,
and v' is the variance of the interval process.

Thus, in a burst, one expects the amplitudes to fall off
along some declining exponential starting at the first pulse, plus

7
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or minus a margin that gets a little wider as the burst proceeds;
and one expects the interpulse spacing to increase approximately
linearly with time, again with a margin that increases down the
line. The parameters a, b, b', k, and m are measured in a learn
mode, and taken to be characteristic of the source; while v and
vP are taken to be rejection thresholds outside of which the
candidate burst sequence terminates.

1.2.4 NETWORK ANALYSIS

The state of the art in network communication analysis of
living neuron networks is still rather primitive, which is to be
expected due to the quite recent emergence of the technology for
simultaneous sensing of numerous points within isolated networks.
The principal tool for the analysis is the pairwise correlation of
features of the spike trains by way of the cross-correlation
histogram. These methods are described in Chapter 10 of MacGregor
and Lewis [3], and in several other papers (e.g., (11).

We feel that although these correlograms are useful tools for
sparsely connected networks such as might be found in aplesia or
in sensory ganglia, we are not likely to find statistically
significant correlations appearing in the more densely connected
networks. The reasoning here is that networks such as found in
the mammalian cortex are structured for the efficient sorting of
coordinated patterns of input signals, rather than for serving as
in-line amplifiers of single inputs. Consequently, it is only
when a synaptic input is a part of a coordinated pattern of inputs
that it will participate in the generation of spiking or bursting
at the output of the afferent neuron.

In order that these experiments with the MMEP apparatus
should fulfill their potential, we feel that they should result
not in the publication of a report that is full of histograms and
other statistical humdrum, but rather that they should be used to
confirm or eliminate specific quantifiable hypotheses regarding
the possible mechanisms of learning, recall, synaptic plasticity.
memory storage, and the like. To do this requires the use of
models which link the hypotheses to certain parameters which are
susceptible to measurement with the apparatus.

One such model is provided in the system of coupled nonlinear
ordinary differential equations known as Grossberg's Field
Equations (nicely presented by Hestenes in [2]). These equations
describe the incremental effect on the ionic potential energy of
certain pulse patterns arriving at the synapses. The details are
important, but they can be summarized by pointing out that for the
excitatory synapses, the effect of the incoming signal in driving
the neuron toward its firing threshold is proportional to the
recent history of the pulse repetition frequency (PRF) on that
synapse. The constant of proportionality is a chararferistic of
the synapse that can be modified by the coincidence of neuronic
firing and input to the synapse. It is called the synaptic

8
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coupling coefficient. The amount of history that is relevant is
controlled by the rate at which the neuron will dissipate its
energy without firing.

According to this model, one would expect to find
correlations between the onset of bursts from a given neuron and
the PRF history on its synapses. This suggests that converting
the spike data to the corresponding PRF history, and "stacking"
these histories whenever a burst occurs at the output of a
particular neuron, might accumulate strong peaks on signals that
are connected to excitatory synapses. On the other hand, if the
stacks are triggered at the onset of blank intervals in the
neuron's output, then the presence of strong peaks would indicate
an inhibitory influence. In contrast to the cross-correlation
(interval) histogram, which attaches significance to the influence
of a single spike at the input to a subsequent single spike at the
output, this technique attaches significance to the recent history
of ionic current-pumping to the onset of bursting. The assumption
here is that the subsequent spikes in a burst are a "ringing"
effect due to the close coupling of each neuron to itself, rather
than a direct effect of the input signals. Therefore, if they
were used as reference points for stacking the input PRF signals,
they would only contribute noise and computational burden.

1.3 SOFTWARE DEVELOPMENT OBJECTIVES

The structural design of the signal processing software that
is presented later in section 2 is guided by the following
considerations. First is the need to make efficient use of the
processing hardware in the MASSCOMP 5700 so that the least amount
of available data from the MMEP apparatus is lost. Preliminary
timing calculations have shown that so long as the preprocessing
tasks (tasks 1 and 2 from page 3) must be handled by the MASSCOMP
it will not be possible to do any burst detection or network
analysis in real time, and probably only the top 6 to 10 channels
in the priority list can be reduced to spike data. The remaining
analysis tasks will have to be done off-line in non-realtime using
previously saved spike data.

However, the next consideration is that hardware development
is under way for the offloading of the preprocessing from the
MASSCOMP to an array of TMS 32020 processors. Therefore, the
processing software needs to be flexible in its scheduling of
processing tasks, according to whether its data is coming directly
from the MMEP in raw form, indirectly from the MMEP through the
32020 boards as spike data (but still in real time), or directly
from disk or tape storage as spike data or burst data on demand.

The fact that the software is being developed in response to
experimental necessities requires careful attention to structured
programming and modular design. Our initial expectations of the
signal processing routines that will be effectual for the desired
analyses will have to be modified with experience. The ability to

9
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hang new and different subroutines into the scheduler without
incurring timing or synchronization problems that propagate
unchecked through the rest of the processes must be built in from
the start.

Because of the limitations on the size and the intensity of
the programming effort, it is recognized that it will not be
feasible to attempt to implement a large and complex software
system. On the other hand, it is highly likely that a low level
of programming effort will be applied to the project over a number
of years. It is wise, then, to take a lesson from this
investigator's past; In 1980 I was assigned to restructure a
system analysis program that was written to predict the
performance of a large solar photovoltaic energy system. That
program was begun small and grew as the system developed. It was
in the form of a single FORTRAN main program without a single
subroutine call aside from intrinsic functions! It was several
thousand lines of incomprehensible rat's nest. I am not
suggesting that anyone on this project would be quite that crude.
Rather, I am emphasizing that it is all right to design a modular,
structured, and comprehensive signal processing program that is
perhaps overwhelming in its scope, but that is at least not likely
to have to be razed several years down the road. With that
thought in mind, we proceed to the structural design of the
algorithm.

2.0 STRUCTURAL DESIGN

The structural design of the processing software is specified
by the HIPO ("Heirarchy, Input-Process-Output") charts which are
included in Appendix C to this report. The following paragraphs
are intended to elaborate on those charts to assist the
programming team in their implementation.

2.1 TOP LEVEL HIPO DESCRIPTION

The top level HIPO chart contains five primary processes.
The first process controls the initialization of the program and
its parameters to reflect the experimental configuration and the
proper disposition of output data (filenames, display devices.
etc.). The user also specifies his processing priorities to
override defaults that will be accepted by the scheduler.

The second process accepts data from the selected source
devices or data files, and performs "learn mode" operations on it
in non-real time. These operations provide the preliminary
pattern recognition functions to establish thresholds. identify
clusters and cluster centers, and tailor a processing sequence to
each channel for the benefit of the master scheduler.

The third process accepts data from the designated source and
applies the appropriate data compression subroutines in accordance
with the processing requirements and timing limitations. This

I 0
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process does not analyze the compressed data (except insofar as
some form of analysis is inherent in the compression), but instead

provides various levels of compressed data to facilitate the
analysis routines in the fourth process. (The functions to be
performed are described in paragraph 1.2 and in Appendices A and

B.)

The fourth process applies certain statistical and analytical
functions in accordance with user specifications and timing
limitations. This process obtains data from the various levels of
compression for graphical representation, listings, etc.; it

computes histograms, correlograms, stacks; and it provides

transfer of compressed data and processing results to appropriate
output files/devices. This process provides the primary user
interaction with the ongoing experiment.

The fifth process terminates the experiment. It is

responsible for purging buffers, closing files, appending user-
supplied text to archive files, and the like.

11
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APPENDIX A

CLUSTERING ALGOR I THMS

A.1 A ONE-PASS ALGORITHM

The following algorithm works well when the data are grouped
into clusters whose diameter is less than the distance to their
nearest neighboring cluster. Significant violation of this
condition will make the algorithm highly sensitive to the arbi-
trary choices imposed in the ordering of the data.

In the following description, the data points X, Y, etc..
may be taken to be scalar voltage samples, in the case where we
are looking for clusters in the amplitude data; or they may be
taken to be the vectors of dimension N consisting of the first
N samples including and following a threshold crossing, in the
case where we are looking for clusters in the pulse waveform
types. In either case, the notation !X-Y: means the Euclidean
distance between the points, whether they are in one dimension or
in N dimensions.

Let (X1,X2,...,Xn) be a sequence of n data points (or
vectors), and deiine Zi to be the i-th cluster center. The
algorithm finds the set (Zi} of cluster centers. First, it is
required to obtain a cluster diameter, D and we assume here that
we can obtain it by experimentation (to see which values produce
the most reasonable clusterings) or by a-priori knowledge of the
variance in amplitudes from a single emitter.

Having established D we then define Zl = X1. Then, for
i = 2 to n , compute the distance from Xi to each of the cluster
centers, Zj. If the distance is greater than D for each j.
then add Xi to the set of cluster centers. Otherwise, assign
Xi to the first cluster for which !Xi-Zj: < D.

If the clusters are sufficiently well-defined that this is a
reasonable algorithm to use, then we recommend a post-clustering
step to redefine the cluster centers (which will be used later for
the realtime amplitude discrimination) to be the centroids of the
individual clusters, found by vector or scalar averaging.

A.2 The MAXIMIN ALGORITHM

The Maximin clustering algorithm, like the one described
above, is a heuristic procedure but in this case multiple passes
through the data are required. The difference is that the Maximin
looks for clusters that are farthest apart first, and instead of
having to know an explicit feature of the clusters in advance

13
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(i.e., the diameter, D), we have to expetiment with a more
nebulous parameter, F, which is a number between 0 and 1.
Start with F = 0.5 for now.

As with the one-pass algorithm, we begin by selecting the
first datum (scalar or vector) X1 to be the first cluster center,
Z1. For the second cluster center. Z2, we find the data point
that is farthest from Z1. (If the distance between ZI and Z2 is
sufficiently small, we can declare that there is only one cluster
and quit.) Let Al be the distance 2-Zll.

Suppose we now have a set (Z1,...,Zm1 of cluster centers, a
number A(m-1) which is the average of the previous maximum
distances, and let {YI ... ,Yn' be the set of data points that have
NOT been assigned to clusters yet. For each j = 1.. .m, compute
the distances Dij = !Zj-YiI, i = 1...n , and save the MINIMUM of
these, say, Dj'. Then find the MAXIMUM of the (Dj j ... ,mo.
Call it D'. if D' is greater than F*A(m-1) then declare the
sample corresponding to D' to be a new cluster center, Z(m+l),
and compute the new average maximum distance with D' included.
Otherwise, terminate the algorithm.

14
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APPENDI X 8

PEAK-FINDING ALGORITHMS

8. 1 THE GRADIENT-SIGN-CHANGE ALGORITHM

It is well-known from elementary calculus that an extremum of
a differentiable function occurs wherever the sicin of the

derivative (gradient) changes from positive to negative, or vice
verSa. This fact has been used by numerous authors (cf. C4]), and
it provides a fast and easy computational method whenever the
signal exhibits well-separated peaks that are well above the
noise. Those conditions seem to apply in the present situation.

The algorithm is applied whenever the thresholdinq detector
has declared that the signal has crossed the threshold, and it
continues until an end condition is satisfied. Let XI be the
datum whose absolute value has just exceeded the threshold * and
let n be the least number of samples that are ever needed at the
present sample rate to cover any spike waveform in the data. For
each j = 1 ... n we check that the sian of (Xj-X(j-l)) is
different from the sign of (X(j+l)-Xj). Zero is included as a
possible third "sign". If the sign has changed, then an extremum
of height (or depth, if negative) Xi is declared to have
occurred at the index (time) j, and the current index is given an
increment (in ADDITION to the normal loop increment) so that in

case (X(j+I)-Xj) was zero the next point will not also be
declared as a peak.

The algorithm continues until a predetermined number of peaks
have been found, or until the n-th datum following the threshold
crossing has been tested, whichever occurs first. Processing the
n-th datum without finding a peak must be reported as an error.

The manner of detecting that the two differences have changed
sign depends on the number of CPU clock cycles that are required
for a multiply instruction. If the product of the adjacent
differences is less than or equal to zero, then the sign has
changed. However, if a multiply is too costly, then the logical
decisions can be streamlined by :eeping track of whether the
threshold crossing was a negative crossing or a positive crossing
and using one of two sequences of logical tests, one being
optimized for ascending data, the other for descending data, with
a switch being made after each peaI is found.

The reason that one might wrnt to find more than one peak in
the waveform is that it provides an additional parameter for
amplitude discrimination that might be used successfully to avoid
having to classify the peak with a Euclidean metric in 20 to 50
di men si on s.
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